首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FMN or methyl viologen stimulated anaerobic reduction of tertiary amine N-oxides by liver microsomes and this stimulatory effect was completely inhibited by carbon monoxide. Spectral study indicated that FMN or methyl viologen is reduced by NADPH-cytochrome c reductase and reduced FMN or methyl viologen is reoxidized by cytochrome P-450 in the presence of tertiary amine N-oxides. In the presence of FMN, xanthine oxidase-hypoxanthine system rapidly reduced tiaramide N-oxides through the reduction of cytochrome P-450: the maximum reduction rate of tiaramide N-oxide was about 100 nmoles/mg protein/min.  相似文献   

2.
Reduction of trimethylamine N-oxide is catalyzed by at least two enzymes inEscherichia coli: trimethylamine N-oxide reductase, which is anaerobically induced by trimethylamine N-oxide, and the constitutive enzyme dimethyl sulfoxide reductase. In this study, an increase in the specific activity of trimethylamine N-oxide reduction was observed in the anaerobic culture with dimethyl sulfoxide, but the specific activity of dimethyl sulfoxide reduction was not changed. The inducible enzyme trimethylamine N-oxide reductase was found in this culture. A marked expression of the structural genetorA for trimethylamine N-oxide reductase was also observed in atorA-lacZ gene fusion strain under anaerobic conditions with either trimethylamine N-oxide or dimethyl sulfoxide.l-Methionine sulfoxide and the N-oxides of adenosine, picolines, and nicotinamide slightly repressed expression of the gene. Membrane-boundb- andc-type cytochromes involved in the trimethylamine N-oxide reduction were also produced in a wild-type strain grown anaerobically with dimethyl sulfoxide. But thec-type cytochrome was not produced in thetorA-lacZ strain grown anaerobically with trimethylamine N-oxide or dimethyl sulfoxide; this suggests that there is a correlation between the expression oftorA and the synthesis of the cytochrome.  相似文献   

3.
NADPH-cytochrome P450 reductase, an obligatory component of the cytochrome P450 dependent monooxygenase system, was purified to electrophoretic homogeneity from beef liver microsomes. The purification procedure involved the ion exchange chromatography of the detergent-solubilized microsomes on first and second DEAE-cellulose columns, followed by 2',5'-ADP Sepharose affinity chromatography. Further concentration of the enzyme and removal of Emulgen 913 and 2'-AMP were accomplished on the final hydroxylapatite column. The enzyme was purified 239-fold and the yield was 13.5%. Monomer molecular weight of the enzyme was estimated to be 76000 +/- 3000 (N = 5) by SDS-PAGE. The absolute absorption spectrum of beef reductase showed two peaks at 455 and 378 nm, with a shoulder at 478 nm, characteristics of flavoproteins. The effects of cytochrome c concentration, pH, and ionic strength on enzyme activity were studied. Reduction of cytochrome c with the enzyme followed Michaelis-Menten kinetics, and the apparent K(m) of the purified enzyme was found to be 47.7 microM for cytochrome c when the enzyme activity was measured in 0.3 M potassium phosphate buffer (pH 7.7). Stability of cytochrome c reductase activity was examined at 25 and 37 degrees C in the presence and absence of 20% glycerol. The presence of glycerol enhanced the stability of cytochrome c reductase activity at both temperatures. Sheep lung microsomal cytochrome P4502B and NADPH-cytochrome P450 reductase were also purified by the already existing methods developed in our laboratory. Both beef liver and sheep lung reductases were found to be effective in supporting benzphetamine and cocaine N-demethylation reactions in the reconstituted systems containing purified sheep lung cytochrome P4502B and synthetic lipid, phosphatidylcholine dilauroyl.  相似文献   

4.
Reduction of tertiary amine N-oxides to the corresponding amines by liver preparations was investigated with imipramine N-oxide and cyclobenzaprine N-oxide under anaerobic conditions. Rabbit liver cytosol in the presence of an electron donor of aldehyde oxidase exhibited a significant N-oxide reductase activity which is comparable to the activity of the liver microsomes supplemented with NADPH. Rabbit liver aldehyde oxidase also exhibited the N-oxide reductase activity in the presence of its electron donor, indicating that the activity observed in the liver cytosol is due to this cytosolic enzyme. Furthermore, the tertiary amine N-oxide reductase activity of liver cytosols from rats, mice, hamsters and hogs was demonstrated by comparison with that of liver microsomes from these mammalian species.  相似文献   

5.
The metabolism of metyrapone was investigated in three mammalian and four non-mammalian species, and keto reduction was found to be the major metabolic route (except in the cat). Toad, lizard and tortoise did not form metyrapone N-oxides. Rat and cat formed both isomeric N-oxides of metyrapone, whereas rabbit and pigeon have a limited capacity to form only the N-oxide II and N-oxide I, respectively. There were marked sex differences in both keto reduction and N-oxidation in the rat. Anthracene did not affect metyrapone N-oxides formation in the male rat; however phenobarbitone and pregnenolone significantly induced N-oxide II formation, whereas ethanol induced both isomeric N-oxides formation. Cimetidine, a known cytochrome P-450 inhibitor, inhibited the N-oxide II formation but with an enhanced N-oxide I formation.  相似文献   

6.
Trimethylamine N-oxide (TMAO) reductase was purified from an aerobic photosynthetic bacterium Roseobacter denitrificans. The enzyme was purified from cell-free extract by ammonium sulfate fractionation, DEAE ion exchange chromatography, hydrophobic chromatography, and gel filtration. The purified enzyme was composed of two identical subunits with molecular weight of 90,000, as identified by SDS-polyacrylamide gel electrophoresis, containing heme c and a molybdenum cofactor. The molecular weight of the native enzyme determined by gel filtration was 172,000. The midpoint redox potential of heme c was +200 mV at pH 7.5. Absorption maxima appeared at 418,524, and 554 nm in the reduced state and 410 nm in the oxidized state. The enzyme reduced TMAO, nicotine acid N-oxide, picoline N-oxide, hydroxylamine, and bromate, but not dimethyl sulfoxide, methionine sulfoxide, chlorate, nitrate, or thiosulfate. Cytochrome c2 served as a direct electron donor. It probably catalyzes the electron transfer from cytochrome b-c1 complex to TMAO reductase. Cytochrome c552, another soluble low-molecular-weight cytochrome of this bacterium, also donated electrons directly to TMAO reductase.  相似文献   

7.
The pre-steady-state redox reactions of the Rieske iron-sulfur protein isolated from beef heart mitochondria have been characterized. The rates of oxidation by c-type cytochromes is much faster than the rate of reduction by ubiquinols. This enables the monitoring of the oxidation of ubiquinols by the Rieske protein through the steady-state electron transfer to cytochrome c in solution. The pH and ionic strength dependence of this reaction indicate that the ubiquinol anion is the direct reductant of the oxidized cluster of the iron-sulfur protein. The second electron from ubiquinol is diverted to oxygen by the isolated Rieske protein, and forms oxygen radicals that contribute to the steady-state reduction of cytochrome c. Under anaerobic conditions, however, the reduction of cytochrome c catalyzed by the protein becomes mechanicistically identical to the chemical reduction by ubiquinols. The present kinetic work outlines that: (i) the electron transfer between the ubiquinol anion and the Rieske cluster has a comparable rate when the protein is isolated or inserted into the parent cytochrome c reductase enzyme; (ii) the Rieske protein may be a relevant generator of oxygen radicals during mitochondrial respiration.  相似文献   

8.
The Chronic Administration of Nicotine Induces Cytochrome P450 in Rat Brain   总被引:2,自引:0,他引:2  
Abstract: The objective of these studies was to determine whether chronic administration of nicotine altered the cytochrome P450 (P450) monooxygenase system in rat brain. Male Sprague-Dawley rats received injections of nicotine bitartrate (1.76 mg/kg, s.c, twice daily for 10 days), and total cytochrome P450 content, the activity of N ADPH-cytochrome c reductase, and the activities and relative abundance of P4502B1 and P4502B2 (P4502B1/2) were determined in microsomal fractions from rat brain. The content of P450 increased significantly (p < 0.02) in all brain regions examined from nicotine-injected rats: the largest increase (208% of control) was in frontal cortex and the smallest increase (122% of control) in cerebellum. The activity of NADPH-cytochrome c reductase was unaltered by nicotine administration. Benzyloxyresorufin O-dealkylase (BROD) and pentoxyresorufin O-dealkylase (PROD) activities, mediated by P4502B1/2, increased significantly (p < 0.02) following nicotine administration; the largest increase (213-227% of control) was in frontal cortex. Western blots of microsomal proteins indicated that the increase in enzymatic activity was associated with an increase in content of P4502B1/2 immunoreactive proteins. In contrast to brain, total P450 content, activities of NADPH-cytochrome c reductase, BROD, and PROD, and levels of P4502B1 /2 immunoreactive proteins in liver were unaffected by chronic nicotine administration. Results indicate that chronic nicotine administration regulates the expression of P4502B1/2 in brain and that at the dose schedule used this effect occurs without a demonstrable effect on the hepatic P450 monooxygenase system.  相似文献   

9.
Among naphthol derivatives tested in the Ames assay, 5,8-dihydroxy-1,4-naphthoquinone or naphthazarin was found to be the most effective inhibitor of benzo(a)pyrene mutagenicity. The inhibitory activity is due in part to the redox cycling of naphthazarin with the concommitant transfer of reducing equivalents from NADPH to molecular oxygen, thus diverting electrons from cytochrome P-450 enzymes. Metabolite separations showed a decrease in microsomal metabolism of benzo(a)pyrene and of benzo(a)pyrene-7,8-dihydrodoil upon addition of naphthazarin. Since both NADP and dicoumarol inhibited the naphthazarin-stimulated non-stoichiometric consumption of NADPH and oxygen then naphthazarin redox cycling probably involves both DT-diaphorase and NADPH cytochrome P-450 reductase.  相似文献   

10.
The novel cytochrome P450/redox partner fusion enzyme CYP116B1 from Cupriavidus?metallidurans was expressed in and purified from Escherichia coli. Isolated CYP116B1 exhibited a characteristic Fe(II)CO complex with Soret maximum at 449 nm. EPR and resonance Raman analyses indicated low-spin, cysteinate-coordinated ferric haem iron at both 10 K and ambient temperature, respectively, for oxidized CYP116B1. The EPR of reduced CYP116B1 demonstrated stoichiometric binding of a 2Fe-2S cluster in the reductase domain. FMN binding in the reductase domain was confirmed by flavin fluorescence studies. Steady-state reduction of cytochrome c and ferricyanide were supported by both NADPH/NADH, with NADPH used more efficiently (K(m[NADPH]) = 0.9 ± 0.5 μM and K(m[NADH]) = 399.1 ± 52.1 μM). Stopped-flow studies of NAD(P)H-dependent electron transfer to the reductase confirmed the preference for NADPH. The reduction potential of the P450 haem iron was -301 ± 7 mV, with retention of haem thiolate ligation in the ferrous enzyme. Redox potentials for the 2Fe-2S and FMN cofactors were more positive than that of the haem iron. Multi-angle laser light scattering demonstrated CYP116B1 to be monomeric. Type I (substrate-like) binding of selected unsaturated fatty acids (myristoleic, palmitoleic and arachidonic acids) was shown, but these substrates were not oxidized by CYP116B1. However, CYP116B1 catalysed hydroxylation (on propyl chains) of the herbicides S-ethyl dipropylthiocarbamate (EPTC) and S-propyl dipropylthiocarbamate (vernolate), and the subsequent N-dealkylation of vernolate. CYP116B1 thus has similar thiocarbamate-oxidizing catalytic properties to Rhodoccocus erythropolis CYP116A1, a P450 involved in the oxidative degradation of EPTC.  相似文献   

11.
A direct kinetic analysis is presented of rapid proton-releasing reactions at the outer or C-side of the membrane, in ox heart and rat liver mitochondria, associated with aerobic oxidation of reduced terminal respiratory carriers in the presence of antimycin. Valinomycin plus K+ enhances the rate of cytochrome c oxidation and the rate and extent of H+ release. In the presence of valinomycin the leads to H+/e- ratio, computed on the basis of total electron flow from respiratory carriers to oxygen, varies with pH, remaining always lower than 1, and is unaffected by N-ethylmaleimide. 2-Heptyl-4-hydroxyquinoline N-oxide and 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole, at concentrations which inhibit in the presence of antimycin the oxygen-induced reduction of b cytochromes, cause also a marked depression of the H+ release associated with aerobic oxidation of terminal respiratory carriers. Aerobic oxidation of the cytochrome system in mitochondria and of isolated b-c1 complex and cytochrome c oxidase results in scalar proton release from ionizable groups (redox Bohr effects). In mitochondria and submitochondrial particles, about 70% of the oxidoreductions of the components of the cytochrome system are linked to scalar proton transfer by ionizable groups. In isolated b-c1 complex scalar proton transfer, resulting from redox Bohr effect, amounts to 0.9H+ per Fe-S protein (190 muT). In isolated cytochrome c oxidase, Bohr protons amount to 0.8 per haem a + a3. The results presented indicate that the H+ release from mitochondria during oxidation of terminal respiratory carriers derives from residual antimycin-insensitive electron flow in the quinone-cytochrome c span and from redox Bohr effects in the b-c1 complex and cytochrome c oxidase. There is no sign of proton pumping by cytochrome oxidase during its transition from the reduced to the active 'pulsed' state and the first one or two turnovers.  相似文献   

12.
A flavoprotein catalyzing the reduction of cytochrome c by NADPH was solubilized and purified from microsomes of yeast grown anaerobically. The cytochrome c reductase had an apparent molecular weight of 70,000 daltons and contained one mole each of FAD and FMN per mole of enzyme. The reductase could reduce some redox dyes as well as cytochrome c, but could not catalyze the reduction of cytochrome b5. The reductase preparation also catalyzed the oxidation of NADPH with molecular oxygen in the presence of a catalytic amount of 2-methyl-1,4-naphthoquinone (menadione). The Michaelis constants of the reductase for NADPH and cytochrome c were determined to be 32.4 and 3.4 micron M, respectively, and the optimal pH for cytochrome c reduction was 7.8 to 8.0. It was concluded that yeast NADPH-cytochrome c reductase is in many respects similar to the liver microsomal reductase which acts as an NADPH-cytochrome P-450 reductase [EC 1.6.2.4].  相似文献   

13.
The interaction of NADPH-cytochrome c reductase with oxygen, artificial acceptors and cytochrome P-450 is investigated. It is found that generation of oxygen anion-radicals (O2-), determined from the reaction of adrenaline oxidation into adrenochrome, proceeds independently on the reactions of interaction with artificial "anaerobic" acceptors-cytochrome c, dichlorophenolindophenol. Propylgallate competitively inhibits the reaction of adrenaline oxidation by isolated DADPH-cytochrome c reductase and non-competitively suppress the reaction of cytochrome c reduction. In contrast to the process of electron transfer on cytochrome c, there is a direct correlation between the rate of cytochrome P-450 reduction and the rate of adrenaline oxidation in liver microsomes. Hexobarbital increases V of the adrenaline oxidation reaction and does not affect the Km value, while metirapon, a metabolic inhibitor, decreases the Vmax and does not change Km. On the basis of the data obtained it is suggested that the reactions of NADPH-cytochrome c reductase interaction with oxygen and artificial "anaerobic" acceptors are connected with different redox-states of flavoprotein or with different flavine coenzymes, and that the electron transport on cytochrome P-450 and directly on oxygen takes place in interrelated redox-states of flavoprotein.  相似文献   

14.
The trimethylamine N-oxide (TMAO) reductase of Escherichia coli is a molybdoenzyme that catalyses the reduction of the TMAO to trimethylamine (TMA) with a redox potential of +130 mV. We have successfully substituted the molybdenum with tungsten and obtained an active tungsto-TMAO reductase. Kinetic studies revealed that the catalytic efficiency of the tungsto-substituted TMAO reductase (W-TorA) was increased significantly (twofold), although a decrease of about 50% in its kcat was found compared with the molybdo-TMAO reductase (Mo-TorA). W-TorA is more sensitive to high pH, is less sensitive to high NaCl concentration and is more heat resistant than Mo-TorA. Most importantly, the W-TorA becomes capable of reducing sulphoxides and supports the anaerobic growth of a bacterial host on these substrates. The evolutionary implication and mechanistic significance of the tungsten substitution are discussed.  相似文献   

15.
The effect of aqueous extract from the roots of Rumex patientia L. (Polygonaceae) (D-1), a traditional Turkish medicine used as a laxative and cholagogue, on drug-metabolizing enzymes, such as cytochrome P4502E1, NADPH cytochrome c reductase, NADH cytochrome b5 reductase and glutathione-S-transferase (GST); and serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were studied in male Wistar albino rat liver. A significant increase was observed in cytochrome P4502E1 and GST activities, but not in NADPH-cytochrome c reductase and NADH-cytochrome b5 reductase activities. Serum AST and ALT activities were found within the normal laboratory range values. The results demonstrated that the aqueous extract of R. patientia triggers induction of cytochrome P4502E1 in liver and cytosolic GST activity.  相似文献   

16.
5-(4-Nitrophenyl)penta-2,4-dienal (NPPD) stimulated NADPH-supported oxygen consumption by rat liver microsomes in a concentration-dependent manner. The NPPD stimulation of O2 uptake was not inhibited by metyrapone and was decreased in the presence of NADP+ and p-hydroxymercuribenzoate. These observations suggest that the NPPD initial reduction step is mediated by NADPH-cytochrome P-450 reductase and not by cytochrome P-450. Spin-trapping studies using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the formation of superoxide anion upon incubation of NPPD, NADPH, DMPO and rat liver microsomes. Hydrogen peroxide generation was also detected in these incubations, thus confirming redox cycling of NPPD under aerobic conditions. NPPD stimulated oxygen consumption, superoxide anion formation and hydrogen peroxide generation by rat kidney, testes and brain microsomes. Other enzymes capable of nitroreduction (NADH dehydrogenase, xanthine oxidase, glutathione reductase, and NADP+ ferredoxin oxidoreductase) were also found to stimulate redox cycling of NPPD. The ability of NPPD to induce superoxide anion and hydrogen peroxide formation might play a role in its reported mutagenicity.  相似文献   

17.
The stoichoimetry of vectorial H+ ejection coupled to electron flow through the cytochrome c oxidase (EC 1.9.3.1) of rat liver mitochondria was determined by a new rate/pulse method. This is a modification of the oxygen-pulse method. Electron flow through the oxidase is initiated by adding oxygen to suspensions of anaerobic mitochondria at a known and constant rate. Cytochrome c oxidase was examined directly or in combination with cytochrome c reductase (ubiquinol:ferricytochrome c oxidoreductase). In both cases the----H0+/2e- ratio was found to be constant during the time-course of oxygen reduction, and thus independent of delta pH. The stoichiometries observed were consistent with mechanistic stoichiometries of 2 and 6 for cytochrome c oxidase alone and cytochrome c oxidase together with cytochrome c reductase, respectively. The stoichiometry of cytochrome c reductase alone was also examined, by using ferricyanide in place of oxygen. The results obtained were consistent with the accepted mechanistic stoichiometry of 4 for this enzyme.  相似文献   

18.
alpha1-Microglobulin (alpha1m) is a 26-kDa plasma and tissue glycoprotein. The protein has a heterogeneous yellow-brown chromophore consisting of small unidentified prosthetic groups localized to a free thiol group (C34) and three lysyl residues (K92, K118, and K130) around the entrance to a hydrophobic pocket. It was recently reported that alpha1m can bind heme and that a C-terminally processed form of alpha1m degrades heme. It is shown here that alpha1m has catalytic reductase and NADH-dehydrogenase-like activities. Cytochrome c, nitroblue tetrazolium (NBT), methemoglobin, and ferricyanide were reduced by alpha1m. Comparison of the reduction rates suggests that methemoglobin is a better substrate than cytochrome c, NBT, and ferricyanide. The reactions with cytochrome c and NBT were mediated by superoxide anions since they were inhibited by superoxide dismutase. The addition of the biological electron donors NADH, NADPH, or ascorbate enhanced the reduction rate of cytochrome c approximately 30-fold. Recombinant alpha1m, which has much less chromophore than plasma and urine alpha1m, was a stronger reductant than the latter alpha1m forms. Site-directed mutagenesis of C34, K92, K118, and K130 and thiol group chemistry showed that the C34 thiol group was involved in the redox reaction but relies upon cooperation with the lysyl residues. The redox properties of alpha1m may provide a physiological protection mechanism against extracellularly exposed heme groups and other oxidants.  相似文献   

19.
The triphasic course previously reported for the reduction of cytochrome b in the succinate-cytochrome c reductase by either succinate or duroquinol has been shown to be dependent on the redox state of the enzyme preparation. Prior reduction with increasing concentrations of ascorbate leads to partial reduction of cytochrome c1, and a gradual decrease in the magnitude of the oxidation phase of cytochrome b. At an ascorbate concentration sufficient to reduce cytochrome c1 almost completely, the reduction of cytochrome b by either succinate or duroquinol becomes monophasic. Owing to the presence of a trace amount of cytochrome oxidase in the reductase preparation employed, the addition of cytochrome c makes electron flow from substrate to oxygen possible. Under such circumstances, the addition of a limited amount of either succinate or duroquinol leads to a multiphasic reduction and oxidation of cytochrome b. After the initial three phases as described previously, cytochrome b becomes oxidized before cytochrome c1 when the limited amount of added substrate is being used up. However, at the end of the reaction when cytochrome c1 is being rapidly oxidized, cytochrome b becomes again reduced. The above observations support a cyclic scheme of electron flow in which the reduction of cytochrome b proceeds by two different routes and its oxidation controlled by the redox state of a component of the respiratory chain.  相似文献   

20.
The interaction of NADPH--cytochrome c reductase with oxygen, artificial acceptors and cytochrome P-450 was studied. The generation of superoxide anion radicals (O2-.) from the oxidation of adrenaline to adrenochrome catalysed by NADPH--cytochrome c reductase proceeds independently of the interaction of the enzyme with the artificial anaerobic acceptors cytochrome c or 2,6-dichlorophenol-indophenol. Propyl 3,4,5-trihydroxybenzoate inhibited competitively the adrenaline oxidation by isolated NADPH--cytochrome c reductase (Ki 3.2--4.7 micrometer) and inhibited non-competitively the cytochrome c reduction (Ki 92--109 micrometer). In contrast with the process of electron transfer to cytochrome c, the rate of reduction of cytochrome P-450 and the rate of oxidation of adrenaline in liver microsomal fraction are correlated. Hexobarbital increases the Vmax. of adrenaline oxidation without affecting the Km value, whereas metyrapone, a metabolic inhibitor decreases Vmax. without affecting the Km. From the results obtained, some conclusions about NADPH--cytochrome c reductase function were made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号