首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Dietary oxysterols can reach the circulation and this may contribute to atherosclerosis, where lipid oxidation is thought to be important. There is also evidence that, in rats,peroxidized lipids are absorbed and transported into lymph [Aw TY, Williams MW, Gray L. Absorption and lymphatic transport of peroxidized lipids by rat small intestine in vivo: role of mucosal GSH. Am J Physiol 1992; 262: G99–G106], although the method used to detect lipid peroxides lacked specificity. We tested whether intragastric administration of vegetable oils containing triglyceride hydroperoxides (TG-OOH) to rats resulted in detectable lipid hydroperoxides in mesenteric lymph. Using sensitive HPLC with postcolumn chemiluminescence detection, we were unable to detect hydroperoxides of triglycerides, cholesterylesters or phospholipids during the course of lipid absorption, and lymph levels of ascorbate, urate, α-tocopherol and ubiquinol-9 did not change significantly. By contrast, we observed a striking reducing activity judged by the efficient reduction of administered ubiquinones-9 and -10 to the corresponding ubiquinols. Exposure of rat lymph and isolated chylomicrons to aqueous peroxyl radicals revealed patterns of antioxidant consumption and lipid hydroperoxide formation similar to those described previously for human extravascular fluids and isolated lipoproteins, respectively. In particular, rates of TG-OOH formation in lymph and chylomicrons were very low to undetectable as long as ascorbate and/or ubiquinols were present, but subsequently proceeded in a chain reaction despite the presence of α-tocopherol. These studies demonstrate that rat intestine and mesenteric lymph possess efficient antioxidant defenses against preformed lipid hydroperoxides and (peroxyl) radical mediated lipid oxidation. We conclude that dietary lipid hydroperoxides or postprandial oxidation of lipids are not likely to contribute to these particular forms of oxidized lipids in circulation and aortic tissue.  相似文献   

2.
Intestinal alkaline phosphatase (IAP) is one of the major sources of alkaline phosphatase in circulation. It is secreted into the intestinal lumen, serum, and lymph. After the ingestion of lipid, lymphatic alkaline phosphatase secretion increases significantly. We have found that the nonabsorbable fat olestra is unable to stimulate lymphatic alkaline phosphatase secretion. We also found that the hydrophobic surfactant Pluronic L-81, which blocks chylomicron formation, fails to inhibit this increase in lymphatic alkaline phosphatase secretion. These results suggest that it is the lipid uptake into the mucosa and/or reesterification to form triacylglycerols, but not the formation of chylomicrons, that is necessary for the stimulation of the secretion of alkaline phosphatase into the lymph.  相似文献   

3.
The recognition of chylomicrons as dietary lipid transporters dates back to more than 70 years and marks a milestone in lipoprotein history. Conventionally, three phases constitute the process of absorption of exogenous fat: intraluminal, intestinal, and delivery. The intraluminal phase includes chemical hydrolysis by lipolytic enzymes and the micellar solubilization of lipolytic products by bile acids. The intestinal phase comprises the diffusion of micelles through the unstirred water layer, passive diffusion across the microvillous membrane of the enterocyte, and the formation of lipid-carrying lipoproteins. The delivery phase involves the exocytosis of chylomicrons from the absorptive cells and their subsequent removal by lymphatic structures and the systemic circulation. The precise steps and factors involved in all phases of chylomicron synthesis are not yet known, but both experimental and clinical studies have been helpful. Of the inborn metabolic disorders, the prerequisite function of apolipoprotein (apo B) for the assembly and release of lipoprotein particles stood out. Moreover, evidence emerged that the enterocyte produces apo B-100 in addition to apo B-48. Calcium and essential fatty acid status originates as determinants for triglyceride-rich particle synthesis. Furthermore, the developmental changes and regulatory factors of lipoprotein elaboration represent excellent tools in the study of the intracellular mechanisms of lipid transport.  相似文献   

4.
Dietary fat is an important mediator of atherosclerosis and obesity. Despite its importance in mediating metabolic disease, there is still much unknown about dietary fat absorption in the intestine and especially the detailed biological roles of intestinal apolipoproteins involved in that process. We were specifically interested in determining the physiological role of the intestinal apolipoprotein A-IV (A-IV) using A-IV knockout (KO) mice. A-IV is stimulated by fat absorption in the intestine and is secreted on nascent chylomicrons into intestinal lymph. We found that A-IV KO mice had reduced plasma triglyceride (TG) and cholesterol levels and that this hypolipidemia persisted on a high-fat diet. A-IV KO did not cause abnormal intestinal lipid absorption, food intake, or adiposity. Additionally, A-IV KO did not cause abnormal liver TG and cholesterol metabolism, as assessed by measuring hepatic lipid content, lipogenic and cholesterol synthetic gene expression, and in vivo VLDL secretion. Instead, A-IV KO resulted in the secretion of larger chylomicrons from the intestine into the lymph, and those chylomicrons were cleared from the plasma more slowly than wild-type chylomicrons. These data suggest that A-IV has a previously unknown role in mediating the metabolism of chylomicrons, and therefore may be important in regulating plasma lipid metabolism.  相似文献   

5.
Human apolipoprotein A-IV rapidly dissociates from the surface of lymph chylomicrons following their entry into circulation by an unknown mechanism. We have therefore investigated the binding of human apoA-IV to triglyceride-rich particles and the interaction of these apoA-IV/lipid complexes with human HDL2. Human apoA-IV was purified from lipoprotein depleted serum (J. Lipid Res. 1983. 24:52-59). Triglyceride-rich particles of well-defined properties were isolated from Intralipid, a commercially available phospholipid-triglyceride emulsion. Various concentrations of radiolabeled human apoA-IV were incubated at 24 degrees C with a fixed quantity of lipid particles; the particles were reisolated by centrifugation, and bound and free apoA-IV were quantitated. In 50 mM Tris, pH 7.4, apoA-IV bound to the triglyceride-rich particles in a non-cooperative manner, with a Kd of 2.0 microM. The calculated maximal binding was 4.96 X 10(-4) mol of apoA-IV bound per mol of phospholipid. The addition of increasing amounts of human HDL2 to the incubations caused the progressive dissociation of apoA-IV from the triglyceride-rich particles. Analysis of the reisolated particles by isoelectric focusing demonstrated the presence of C-apoproteins, suggesting their transfer from HDL2. Addition of purified apoC-III-1 to the incubations at concentrations equivalent to those present in HDL2 caused a similar dissociation of apoA-IV. HDL2 was modified to selectively remove C-apoproteins, without alteration of other physical characteristics. This modified HDL2 was four times less effective in causing apoA-IV dissociation. These results demonstrate that the lipid binding properties of human apoA-IV may be quantitatively examined using triglyceride-rich particles as model chylomicrons. This approach reproduces in vitro the dissociation of apoA-IV that occurs in vivo when mesenteric lymph chylomicrons enter the circulation, and suggests that the primary mechanism for this phenomenon is the transfer of C-apoproteins from high density lipoproteins to the triglyceride-rich particle surface. We hypothesize that this mechanism may play an important role in the modulation of chylomicron apoA-IV content in man.  相似文献   

6.
Tri[14C]acylglycerol-labelled chylomicrons, obtained from cannulated mesenteric lymph of streptozotocin-diabetic donor rats, when intravenously injected into non-diabetic recipient rats, disappeared from the circulation at a significantly slower rate than similarly prepared tri[14C]acylglycerol chylomicrons from non-diabetic donor rats (t1/2, 5.6 +/- 0.7 vs. 3.2 +/- 0.5 min-1, P less than 0.02). The appearance of labelled lipolysis products among plasma lipids (free fatty acid, cholesterol ester and phospholipid fractions) was delayed, indicating decreased availability for lipolysis of the chylomicron-borne triacylglycerol of diabetic origin. Tissue distribution of triacylglycerol, 15 min after the injection of chylomicrons to recipient rats, disclosed a 4-5-fold increase in uptake by muscles (heart and diaphragm) in relation to adipose tissues (epididymal and perirenal sites), in the case of chylomicrons of diabetic derivation. Since a large share of the chylomicron triacylglycerol was taken up by the liver, this tissue was perfused with chylomicron 'remnants' prepared by partial in vitro lipolysis with purified lipoprotein lipase. The 'remnants' of diabetic derivation were taken up by the liver at a 2-3-fold slower rate than those of non-diabetic origin. Chylomicrons derived from diabetic rats were found to be similar in size but markedly depleted of E apolipoproteins as determined by SDS-polyacrylamide gel electrophoresis, isoelectric focussing and a specific immunoassay. Decreases were also seen in A-I apolipoproteins by immunoassay and isoelectric focussing. Chylomicron 'remnants' were also markedly apolipoprotein E-deficient. In vitro incubation of the 'diabetic remnants' with high-density lipoproteins raised their apolipoprotein E content approx. 3-fold and considerably increased their hepatic uptake. Injection of intact chylomicrons preincubated with high-density lipoproteins likewise increased their in vivo removal rate toward the range of that of 'non-diabetic' chylomicrons. We conclude that diabetes-induced changes in the apolipoprotein composition of the chylomicrons and chylomicron remnants play an important role in their removal from the circulation. It appears that their recognition pattern is altered, reducing their ability to interact with receptor sites in the peripheral tissues and the liver, respectively.  相似文献   

7.
Alitalo K 《Nature medicine》2011,17(11):1371-1380
Blood vessels form a closed circulatory system, whereas lymphatic vessels form a one-way conduit for tissue fluid and leukocytes. In most vertebrates, the main function of lymphatic vessels is to collect excess protein-rich fluid that has extravasated from blood vessels and transport it back into the blood circulation. Lymphatic vessels have an important immune surveillance function, as they import various antigens and activated antigen-presenting cells into the lymph nodes and export immune effector cells and humoral response factors into the blood circulation. Defects in lymphatic function can lead to lymph accumulation in tissues, dampened immune responses, connective tissue and fat accumulation, and tissue swelling known as lymphedema. This review highlights the most recent developments in lymphatic biology and how the lymphatic system contributes to the pathogenesis of various diseases involving immune and inflammatory responses and its role in disseminating tumor cells.  相似文献   

8.
The lymphatic system was first described at around the same time as the blood circulation centuries ago, but the biological function elucidation of LECs (lymphatic endothelial cells) is far less than that of BVECs (blood vascular endothelial cells). Since the discovery of molecular markers for LECs and exploration of lymphatic role in tumour metastasis, more attention has been given to basic lymphatic research. Approx. 150 known genes were found to be expressed at the mRNA and protein levels by LECs. These molecules play an important role in lymphangiogenesis, signalling, tumour metastasis, immune function and fluid transport. This review provides a brief outline of gene expression profile of LECs and the molecular biological function, which will give the reader a better understanding about the mechanics of lymphatic function and some pathologies related to the lymphatic system such as lymphoedema, and facilitate advanced scientific research into lymphatic biology.  相似文献   

9.
Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels.  相似文献   

10.
Retinoids (vitamin A and its derivatives) play an essential role in many biological functions. However mammals are incapable of de novo synthesis of vitamin A and must acquire it from the diet. In the intestine, dietary retinoids are incorporated in chylomicrons as retinyl esters, along with other dietary lipids. The majority of dietary retinoid is cleared by and stored within the liver. To meet vitamin A requirements of tissues, the liver secretes retinol (vitamin A alcohol) into the circulation bound to its sole specific carrier protein, retinol-binding protein (RBP). The single known function of this protein is to transport retinol from the hepatic stores to target tissues. Over the last few years, the generation of knockout and transgenic mouse models has significantly contributed to our understanding of RBP function in the metabolism of vitamin A. We discuss below the role of RBP in maintaining normal vision and a steady flux of retinol throughout the body in times of need.  相似文献   

11.
This study assessed the effect of concomitant lipid absorption on the bioavailability and lymphatic transport of benzo(a)pyrene (BP), a carcinogenic polycyclic aromatic hydrocarbon (PAH). Conscious, male Sprague-Dawley rats, equipped with biliary and mesenteric lymphatic catheters received intraduodenally a dose of 0.4 mumoles 3H-labeled BP completely dissolved in either 50 mumoles or 500 mumoles of olive oil. Diversion of mesenteric lymph allowed biliary and urinary excretion of 3H to be used as an indirect measurement of relative 3H portal transport. Total radiolabel recovered in a 24-hr period in each group was 20.0 +/- 2.6% of the 3H dose given in 50 mumoles of oil, and 17.0 +/- 1.0% of the 3H dose administered in 500 mumoles of oil. In animals receiving the low-fat test meal, 79.4 +/- 1.4% of the recovered radiolabel was found in bile; the corresponding value for the high fat dose was 78.5 +/- 2.6%. Thus a tenfold variation in the mass of the carrier vehicle (triglyceride oil) did not significantly effect the disposition of BP, and portal, not lymphatic transport, was the major route of post-absorptive transport. Although the chylomicrons produced from both fat doses were initially contaminated with BP, within 1-1.5 hr the radioactivity in lymph began to drop such that by 3 hr in the animals fed high fat, the chylomicrons were essentially free of BP. These results show that the rat enterocyte quickly adapts to PAH-contaminated dietary fat, even during the assimilation of a single dose of fat. Presumably, during the post-absorptive synthesis of chylomicrons from pre-chylomicrons, BP is metabolized and removed from the triglyceride oil droplets.  相似文献   

12.
The lymphatic absorption and transport of retinol and vitamin D-3 from rat intestine has been studied. When rats were cannulated in the intestinal lymph duct and given an intraduodenal bolus of [3H]retinol and 14C-labelled vitamin D-3, 14C-labeled vitamin D-3 appeared later in the intestinal lymph than [3H]retinol and the rate of absorption of vitamin D-3 was still maximal at a time when that of retinol had declined. Both vitamins were absorbed via the lymphatic route in association with chylomicrons. Almost all the retinol was esterified, while vitamin D-3 appeared in the chylomicrons as free vitamin D-3. In vitro incubations and in vivo studies using hepatectomized and normal rats showed that the retinyl ester was a relatively nonexchangeable component of the chylomicrons and their remnants. Hence, all the vitamin A followed the remnants in their clearance from plasma. In contrast, significant amounts of vitamin D-3 were transferred from the chylomicrons to other plasma fractions. Therefore, only a fraction of this vitamin may be removed in association with the chylomicron remnants.  相似文献   

13.
The transfer of cholesteryl esters and apolipoprotein E has been studied between plasma HDL and chylomicrons isolated either from ascitic fluid or from the plasma of a patient with type V hyperlipoproteinemia. Whereas apolipoprotein E transfer was rapid and occurred at low temperature, cholesteryl ester transfer was suppressed at 4 degrees C. Apolipoprotein E transfer did not depend upon the presence of cholesteryl ester transfer protein and was in fact inhibited by the partially purified preparation of this protein. Apolipoprotein E transfer was not increased by reduction with dithiothreitol. The transfer of cholesteryl esters increased sharply at a chylomicron to HDL ratio of cholesteryl ester above 1/10, a value which may be of physiological significance at the peak of postprandial lipemia. At this ratio, the transfer of apolipoprotein E was minimal and increased only at ratios above 2/1. From these results, it is concluded that there is no connection between apolipoprotein E and cholesteryl ester transfer from HDL to chylomicrons. It is, therefore, proposed that whereas chylomicron apolipoprotein E is acquired rapidly and mostly in the lymphatic system, the concentration of chylomicron cholesteryl esters increases significantly and independently in the circulation.  相似文献   

14.
The lipids extracted from chylomicrons, chylomicron remnants generated in vivo and hepatic-lipase-treated chylomicrons were emulsified by sonication. These emulsified particles retained the capacity of the native lipoproteins to be differentiated by the liver in vivo, i.e. only the particles derived from remnant and hepatic-lipase-treated chylomicron lipids were efficiently taken up by the liver. To investigate the role of phospholipids in this differentiation process, the phospholipids of all three lipoprotein preparations were separated from the remaining lipids by silicic acid chromatography. The phospholipid-free lipid fraction of chylomicrons was then emulsified with the phospholipids derived from each of the three lipoprotein preparations. Only the particles emulsified with phospholipids derived from remnants and hepatic-lipase-treated chylomicrons were efficiently taken up by the liver in vivo. These results support the proposition that phospholipids modulate the hepatic differentiation between chylomicrons and remnants in vivo.  相似文献   

15.
Chylomicrons have been shown to protect against endotoxin-induced lethality. LPS-binding protein (LBP) is involved in the inactivation of bacterial toxin by lipoproteins. The current study examined the interaction among LBP, chylomicrons, and bacterial toxin. LBP was demonstrated to associate with chylomicrons and enhance the amount of LPS binding to chylomicrons in a dose-dependent fashion. In addition, LBP accelerated LPS binding to chylomicrons. This LBP-induced interaction of LPS with chylomicrons prevented endotoxin toxicity, as demonstrated by reduced cytokine secretion by PBMC. When postprandial circulating concentrations of chylomicrons were compared with circulating levels of low density lipoprotein, very low density lipoprotein, and high density lipoprotein, chylomicrons exceeded the other lipoproteins in LPS-inactivating capacity. Furthermore, highly purified lipoteichoic acid, an immunostimulatory component of Gram-positive bacteria, was detoxified by incubation with LBP and chylomicrons. In conclusion, our results indicate that LBP associates with chylomicrons and enables chylomicrons to rapidly bind bacterial toxin, thereby preventing cell activation. Besides a role in the detoxification of bacterial toxin present in the circulation, we believe that LBP-chylomicron complexes may be part of a local defense mechanism of the intestine against translocated bacterial toxin.  相似文献   

16.
The lymphatic absorption and transport of retinol and vitamin D-3 from rat intestine has been studied. When rats were cannulated in the intestinal lymph duct and given an intraduodenal bolus of [3H]retinol and 14C-labelled vitamin D-3, 14C-labeled vitamin D-3 appeared later in the intestinal lymph than [3H]retinol and the rate of absorption of vitamin D-3 was still maximal at a time when that of retinol had declined. Both vitamins were absorbed via the lymphatic route in association with chylomicrons. Almost all the retinol was esterified, while vitamin D-3 appeared in the chylomicrons as free vitamin D-3. In vitro incubations and in vivo studies using hepatectomized and normal rats showed that the retinyl ester was a relatively nonexchangeable component of the chylomicrons and their remnants. Hence, all the vitamin A followed the remnants in their clearance from plasma. In contrast, significant amounts of vitamin D-3 were transferred from the chylomicrons to other plasma fractions. Therefore, only a fraction of this vitamin may be removed in association with the chylomicron remnants.  相似文献   

17.
Intestinal lipid absorption is associated with marked increases in the synthesis and secretion of apolipoprotein A-IV (apoA-IV) by the small intestine. Whether the increased intestinal apoA-IV synthesis and secretion results from increased fat uptake, increased cellular triglyceride (TG) content, or increased secretion of TG-rich lipoproteins by the enterocytes is unknown. Previous work from this laboratory has shown that a hydrophobic surfactant, Pluronic L-81 (L-81), is a potent inhibitor of intestinal formation of chylomicrons (CM), without reducing fat uptake or re-synthesis to TG. Furthermore, this inhibition can be reversed quickly by the cessation of L-81 infusion. Thus L-81 offers a unique opportunity to study the relationship between lymphatic TG, apoA-I and A-IV secretion. In this study, we studied the lymphatic transport of TG, apoA-I, and apoA-IV during both the inhibitory phase (L-81 infused together with lipid) and the subsequent unblocking phase (saline infusion). Two groups of lymph fistula rats were used, the control and the experimental rats. In the experimental rats, a phosphate-buffered taurocholate-stabilized emulsion containing 40 mumol [3H]triolein, 7.8 mumol of phosphatidylcholine, and 1 mg L-81 per 3 ml was infused at 3 ml/h for 8 h. This was then replaced by glucose-saline infusion for an additional 12 h. The control rats received the same lipid emulsion as the experimental rats, but without L-81 added, for 8 h. Lymph lipid was determined both by radioactivity and by glyceride-glycerol determination, and the apoA-I and apoA-IV concentrations were determined by rocket electroimmunophoresis assay. L-81 inhibited the rise in lymphatic lipid and apoA-IV output in the experimental rats after the beginning of lipid + L-81 infusion. Upon cessation of L-81 infusion, the mucosal lipid accumulated as a result of L-81 treatment was rapidly cleared into lymph as CM. This was associated with a marked increase in apoA-IV output; the maximal output was about 3 times that of the fasting level. There was a time lag of 4-5 h between the peak lymph lipid output and the peak lymph apoA-IV output during the unblocking phase in the experimental rats. There was also a comparable time lag between the maximal lipid and apoA-IV outputs in the control animals. Incorporation studies using [3H]leucine showed that apoA-IV synthesis was not stimulated during lipid + L-81 infusion, perhaps explaining the lack of increase in lymphatic A-IV secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Apolipoprotein A-IV is a 46kDa glycoprotein that is synthesized by intestinal enterocytes and is incorporated into the surface of nascent chylomicrons. Considerable evidence suggests that apolipoprotein A-IV plays a role in intestinal lipid absorption and chylomicron assembly. We have proposed that polymorphisms that alter the interfacial behavior of apolipoprotein A-IV may modulate the physical properties and metabolic fate of plasma chylomicrons. Of the reported genetic polymorphisms of apolipoprotein A-IV, two, Q360H and T347S, are known to occur at high frequencies among the world populations. Biophysical studies have established that the Q360H isoprotein displays higher lipid affinity; conversely the T347S isoprotein is predicted to be less lipid avid. Recent studies have shown that the Q360H polymorphism is associated with increased postprandial hypertriglyceridemia, a reduced low-density lipoprotein response to dietary cholesterol in the setting of a moderate fat intake, an increased high-density lipoprotein response to changes in total dietary fat content, and lower body mass and adiposity; the T347S polymorphism appears to confer the opposite effects. Studies on the diet-gene interactions of other apolipoprotein A-IV alleles are needed, as are studies on the interactions between apolipoprotein A-IV alleles and other apolipoprotein polymorphisms.  相似文献   

19.
Lacteals are the entry point of all dietary lipids into the circulation, yet little is known about the active regulation of lipid uptake by these lymphatic vessels, and there lacks in vitro models to study the lacteal—enterocyte interface. We describe an in vitro model of the human intestinal microenvironment containing differentiated Caco‐2 cells and lymphatic endothelial cells (LECs). We characterize the model for fatty acid, lipoprotein, albumin, and dextran transport, and compare to qualitative uptake of fatty acids into lacteals in vivo. We demonstrate relevant morphological features of both cell types and strongly polarized transport of fatty acid in the intestinal‐to‐lymphatic direction. We found much higher transport rates of lipid than of dextran or albumin across the lymphatic endothelial monolayer, suggesting most lipid transport is active and intracellular. This was confirmed with confocal imaging of Bodipy, a fluorescent fatty acid, along with transmission electron microscopy. Since our model recapitulates crucial aspects of the in vivo lymphatic–enterocyte interface, it is useful for studying the biology of lipid transport by lymphatics and as a tool for screening drugs and nanoparticles that target intestinal lymphatics. Biotechnol. Bioeng. 2009;103: 1224–1235. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Apoprotein-free heparin-binding and non-binding chylomicrons were used as substrates to test the effects on lipoprotein lipase activity of (a) chylomicron protein I; (b) the mixture of proteins I, II and apoprotein E and (c) human beta 2-glycoprotein I. No activation of the enzyme was observed with any of those apoproteins. When rats were injected simultaneously with [3H]cholesterol-labelled heparin-binding chylomicrons (containing proteins I and II) and [14C]cholesterol-labelled non-binding chylomicrons, no differences were detected between the rates of removal from circulation of those two types of particles. Clearance of chylomicrons from circulation was accompanied by the incorporation of 3H and 14C labels into the livers at similar rates. It is concluded that proteins I, II and apoprotein E have no effect on the degradation of chylomicrons by lipoprotein lipase and that the hepatic recognition of remnants does not appear to be affected by proteins I and II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号