首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of feeding (fed to satiation, 13.85% body mass) on excess post-exercise oxygen consumption (EPOC, chasing for 2.5 min) was investigated in juvenile southern catfish (Silurus meridionalis Chen) (38.62-57.55 g) at 25. Cutlets of freshly killed loach species without viscera, head and tail were used as the test meal, and oxygen consumption (VO(2)) was adjusted to a standard body mass of 1 kg using a mass exponent of 0.75. Resting VO(2) increased significantly above fasting levels (49.89 versus 148.25 mg O(2) h(-)(1)) in 12 h postprandial catfish. VO(2) and ventilation frequency (V(f)) both increased immediately after exhaustive exercise and slowly returned to pre-exercise values in all experimental groups. The times taken for post-exercise VO(2) to return to the pre-exercise value were 20, 25 and 30 min in 12 h, 60 h and 120 h postprandial catfish, respectively. Peak VO(2) levels were 257.36+/-6.06, 219.32+/-6.32 and 200.91+/-5.50 mg O(2) h(-1) in 12 h, 60 h and 120 h postprandial catfish and EPOC values were 13.85+/-4.50, 27.24+/-3.15 and 41.91+/-3.02 mg O(2) in 12 h, 60 h and 120 h postprandial southern catfish, respectively. There were significant differences in both EPOC and peak VO(2) during the post-exercise recovery process among three experimental groups (p<0.05). These results showed that: (1) neither digestive nor exhaustive exercise could elicit maximal VO(2) in southern catfish, (2) both the digestive process and exercise (also the post-exercise recovery process) were curtailed under postprandial exercise, (3) the change of V(f) was smaller than that of VO(2) during the exhaustive exercise recovery process, (4) for a similar increment in VO(2), the change in V(f) was larger during the post-exercise process than during the digestive process.  相似文献   

2.
The effect of a single bout of exhaustive exercise on muscle lactate transport capacity was studied in rat skeletal muscle sarcolemmal (SL) vesicles. Rats were assigned to a control (C) group (n = 14) or an acutely exercised (E) group (n = 20). Exercise consisted of treadmill running (25 m/min, 10% grade) to exhaustion. SL vesicles purified from C and E rats were sealed because of sensitivity to osmotic forces. The time course of 1 mM lactate uptake in zero-trans conditions showed that the equilibrium level in the E group was significantly lower than in the C group (P < 0.05). The initial rate of 1 mM lactate uptake decreased significantly from 2.44 +/- 0.22 to 1.03 +/- 0.08 nmol. min(-1). mg protein(-1) (P < 0.05) after exercise, whereas that of 50 mM lactate uptake did not differ significantly between the two groups. For 100 mM external lactate concentration ([lactate]), exhaustive exercise increased initial rates of lactate uptake (219.6 +/- 36.3 to 465.4 +/- 80.2 nmol. min(-1). mg protein(-1), P < 0.05). Although saturation kinetics were observed in the C group with a maximal transport velocity of 233 nmol. min(-1). mg protein(-1) and a Michealis-Menten constant of 24.5 mM, saturation properties were not seen after exhaustive exercise in the E group, because initial rates of lactate uptake increased linearly with external [lactate]. We conclude that a single bout of exhaustive exercise significantly modified SL lactate transport activity, resulting in a decrease in 1 mM lactate uptake and was associated with alterations in the saturable properties at [lactate] above 50 mM. These results suggest that changes in sarcolemmal lactate transport activity may alter lactate and proton exchanges after exhaustive exercise.  相似文献   

3.
The hypothesis investigated whether exercise performance over a broad range of intensities is determined by specific skeletal muscle characteristics. Seven subjects performed 8-10 exhaustive cycle trials at different workloads, ranging from 150 to 700 W (150 min to 20 s). No relationships between the performance times at high and low workloads were observed. A relationship (P < 0.05) was noticed between the percentage of fast-twitch x fibers and the exercise time at 579 ± 21 W (~30 s; r(2) = 0.88). Capillary-to-fiber-ratio (r(2): 0.58-0.85) was related (P < 0.05) to exercise time at work intensities ranging from 395 to 270 W (2.5-21 min). Capillary density was correlated (r(2) = 0.68; P < 0.05) with the net rate of plasma K(+) accumulation during an ~3-min bout and was estimated to explain 50-80% (P < 0.05) of the total variance observed in exercise performances lasting ~30 s to 3 min. The Na(+)-K(+) pump β(1)-subunit expression was found to account for 13-34% (P < 0.05) during exhaustive exercise of ~1-4 min. In conclusion, exercise performance at different intensities is related to specific physiological variables. A large distribution of fast-twitch x fibers may play a role during very intense efforts, i.e., ~30 s. Muscle capillaries and the Na(+)-K(+) pump β(1)-subunit seem to be important determinants for performance during exhaustive high-intensity exercises lasting between 30 s and 4 min.  相似文献   

4.
Although impaired respiratory muscle performance that persists up to 5 min after exercise is stopped has been demonstrated during exhaustive exercise in normal young men, it is not known whether impaired respiratory muscle function follows endurance exercise to exhaustion in highly trained athletes. To study the effects of exercise on sustained maximal voluntary ventilation immediately after exercise, eight elite cross-country skiers performed a 4-min maximal sustained ventilation (MSV) test before and immediately after exhaustive exercise. Subjects were encouraged to maintain maximal ventilation (VE) throughout the MSV test. To encourage greater effort, rapid visual feedback of VE was provided on a computer terminal along with a target VE based on their 12-s maximum voluntary ventilation (MVV). The subjects (7 males, 1 female) were 18.5 +/- 0.9 yr old (mean +/- SD) and exercised for 62.5 +/- 16.7 min at 77 +/- 5% of their maximum oxygen consumption during which average VE was 106.7 +/- 24.2 l/min BTPS. The mean MVV was 196.0 +/- 29.9 l/min or 107% of their age- and height-predicted MVV. Before exercise the MSV was 86% of the MVV or 176.7 +/- 30.5 l/min, whereas after exercise the MSV was 90% of the MVV or 180.3 +/- 28.9 l/min (P = NS). The total volume of gas expired during the 4-min MSV was 706.7 +/- 121.9 liters before and 721.2 +/- 115.5 liters after exercise (P = NS). In this group of athletes, exhaustive exercise produced no deleterious effects on the ability to perform a 4-min MSV test immediately after exercise.  相似文献   

5.
Electrocardiograms were recorded hourly for five days in 16 caged Macaca fascicularis by means of a miniaturized ECG transmitter connected to two chest leads. The lowest heart rates were 135 +/- 35 (mean +/- SD, n= 31) beats/min at 5 a.m., and the highest were 192 +/- 22 (n = 29) beats/min at 3 p.m. Sinus arrhythmia was common. Eight of the animals were trained to exercise in a specially designed enclosed treadmill; their heart rates were recorded daily during two 10-min periods of running at 3.4 km/h. Transfer of the monkeys (n k0) to the treadmill increased heart rate from 186 +/- 24 to 228 +/- 23 beats/min; exercise further increased it to 271 +/- 8 beats/min.  相似文献   

6.
Values of oxygen consumption, carbon dioxide production, ventilation and blood lactate concentration were determined in eight active male subjects during the minute following submaximal square-wave exercise on a treadmill under two sets of conditions. Square-wave exercise was (1) integrated in a series of intermittent incremental exercises of 4-min duration separated by 1-min rest periods; (2) isolated, of 4- and 12-min duration, and of intensity corresponding to each of the intermittent incremental periods of exercise. For square-wave exercise of the same duration (4 min) and intensity, no significant differences in the above-mentioned parameters were noted between intermittent incremental exercise and isolated exercise. Only at high work rate (greater than 92% maximal oxygen uptake), were blood lactate levels in three subjects slightly higher after 12-min of isolated exercise than after the 4-min periods of isolated exercise. Examination of these results suggests that (1) 80-90% of the blood lactate concentration observed under our experimental conditions results from the accumulation of lactate in the blood during the period of oxygen deficit; (2) therefore the blood lactate concentration/exercise intensity relationship, for the most part, appears to represent the lactate accumulated early in the periods of intermittent incremental exercise.  相似文献   

7.
Plateau in muscle blood flow during prolonged exercise in miniature swine   总被引:1,自引:0,他引:1  
Cardiovascular, metabolic, and thermoregulatory responses were studied in eight male miniature swine during a prolonged treadmill run. Each animal underwent 8-10 wk of exercise training, thoracic surgery, and 3 wk of retraining before the experimental run. This regimen enabled the animals to run at 65% of the heart rate range (210-220 beats/min) for approximately 100 min. Skin wetting and a fan were used to cool the pigs during the run. Regional blood flow was significantly altered with the onset of exercise; however, hindlimb muscle and total gastrointestinal blood flow were unchanged throughout the exercise period. Compared with 5-min values, heart rate and cardiac output were significantly elevated by 17 beats/min and 31 ml.min-1.kg-1 at 60 min and by 20 beats/min and 33 ml.min-1.kg-1 at end exercise, respectively. Core temperatures increased between 5 and 30 min of exercise (39.4 vs. 39.9 degrees C) but then remained unchanged to the end of exercise. Mean arterial pressure, O2 consumption, and blood lactate did not change during the exercise bout. These data indicate that limiting increases in core temperature during prolonged exercise was associated with a plateau in active muscle blood flow.  相似文献   

8.
We investigated the effects of chicken essence (CE) supplementation on exercise-induced changes of lactate and ammonia during recovery. In this randomized, double blind, crossover study, twelve healthy subjects performed a single bout of exercise to exhaustion, and then consumed either a placebo or CE within 5-min of the exercise cessation. Blood samples were collected before exercise, at exhaustion (0 minute), and 20, 40, 60, and 120 minutes, respectively during the recovery period. There were no differences in plasma glucose, creatine kinase, or heart rate responses between treatments. The exercise exhaustion significantly increased the levels of lactate and ammonia, and both measured values gradually declined during the recovery period. Ammonia levels at 40, 60, and 120 min. of the recovery period were observed lower significantly in the CE group, as compared to those in the placebo group. Additionally, lactate concentrations at 60 and 120 min were lower in the CE group, as compared to those in the placebo group. In conclusion, the main finding of this study was that CE supplementation after exercise reduces plasma lactate and ammonia levels. The results indicated that CE supplementation after an exhaustive exercise could enhance physiological recovery in humans.  相似文献   

9.
Neuroendocrine and sympathoadrenal responses to exhaustive graded treadmill exercise were examined in 17 male subjects of varying degrees of fitness. The mean duration of exercise to exhaustion was 15.2 +/- 0.7 (+/- SE) min. Exercise duration was inversely correlated with baseline heart rate (P less than 0.05). Compared to standing baseline values, mean plasma norepinephrine and epinephrine levels increased 339% and 301%, respectively, in an integrated 2-min blood sample collected immediately after completion of exercise. Mean adrenocorticotrophic hormone (ACTH), beta-endorphin (beta-EP), beta-lipotropin (beta-LPH), and prolactin levels increased 282%, 720%, 372%, and 211%, respectively, in an integrated 4-min blood sample beginning 2 min after completion of exercise. Cortisol levels increased 183% in the sample collected 17-21 min after exercise. The magnitude of these neuroendocrine responses to exercise was similar among individuals at the same relative intensity of exhaustive exercise, regardless of the duration of exercise. The exercise-induced increases of the pro-opiomelanocortin (POMC)-derived peptides, ACTH, beta-EP, and beta-LPH, were highly correlated with each other (P values less than 0.001), and were correlated with prolactin increases, (P values less than 0.05). During a 20-min recovery period after exercise, changes in heart rate, ACTH, and beta-LPH levels were correlated with duration of exercise, (P less than 0.01, P less than 0.03, and P less than 0.03, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Pulmonary clearance of 99mTc-DTPA: influence of background activity   总被引:4,自引:0,他引:4  
To study the effects of circulatory occlusion on the time course and magnitude of postexercise O2 consumption (VO2) and blood lactate responses, nine male subjects were studied twice for 50 min on a cycle ergometer. On one occasion, leg blood flow was occluded with surgical thigh cuffs placed below the buttocks and inflated to 200 mmHg. The protocol consisted of a 10-min rest, 12 min of exercise at 40% peak O2 consumption (VO2 peak), and a 28-min resting recovery while respiratory gas exchange was determined breath by breath. Occlusion (OCC) spanned min 6-8 during the 12-min work bout and elicited mean blood lactate of 5.2 +/- 0.8 mM, which was 380% greater than control (CON). During 18 min of recovery, blood lactate after OCC remained significantly above CON values. VO2 was significantly lower during exercise with OCC compared with CON but was significantly higher during the 4 min of exercise after cuff release. VO2 was higher after OCC during the first 4 min of recovery but was not significantly different thereafter. Neither total recovery VO2 (gross recovery VO2 with no base-line subtraction) nor excess postexercise VO2 (net recovery VO2 above an asymptotic base line) was significantly different for OCC and CON conditions (13.71 +/- 0.45 vs. 13.44 +/- 0.61 liters and 4.93 +/- 0.26 vs. 4.17 +/- 0.35 liters, respectively). Manipulation of exercise blood lactate levels had no significant effect on the slow ("lactacid") component of the recovery VO2.  相似文献   

11.
The effects of endurance training on lactate transport capacity remain controversial. This study examined whether endurance training 1) alters lactate transport capacity, 2) can protect against exhaustive exercise-induced lactate transport alteration, and 3) can modify heart and oxidative muscle monocarboxylate transporter 1 (MCT1) content. Forty male Wistar rats were divided into control (C), trained (T), exhaustively exercised (E), and trained and exercised (TE) groups. Rats in the T and TE groups ran on a treadmill (1 h/day, 5 days/wk at 25 m/min, 10% incline) for 5 wk; C and E were familiarized with the exercise task for 5 min/day. Before being killed, E and TE rats underwent exhaustive exercise (25 m/min, 10% grade), which lasted 80 and 204 min, respectively (P < 0.05). Although lactate transport measurements (zero-trans) did not differ between groups C and T, both E and TE groups presented an apparent loss of protein saturation properties. In the trained groups, MCT1 content increased in soleus (+28% for T and +26% for TE; P < 0.05) and heart muscle (+36% for T and +33% for TE; P < 0.05). Moreover, despite the metabolic adaptations typically observed after endurance training, we also noted increased lipid peroxidation byproducts after exhaustive exercise. We concluded that 1) endurance training does not alter lactate transport capacity, 2) exhaustive exercise-induced lactate transport alteration is not prevented by training despite increased MCT1 content, and 3) exercise-induced oxidative stress may enhance the passive diffusion responsible for the apparent loss of saturation properties, possibly masking lactate transport regulation.  相似文献   

12.
Six healthy active women in the third trimester of pregnancy participated in a graded exercise protocol to levels of exertion perceived to be equivalent to that of their usual exercise regimen. Fetal heart rate response (FHR) was documented by ultrasound transducer and confirmed (n = 1) by ultrasonic visualization. Resting maternal O2 consumption was 277 +/- 50 (SD) ml/min and rose to 1,132 +/- 202 ml/min at a mean final exercise intensity of 79 +/- 9 W after 12.8 +/- 1.7 min on a cycle ergometer. There was no significant change in maternal serum insulin, growth hormone, glucose, or pH values. Maternal leukocyte count, hemoglobin, and venous lactate levels rose significantly during the exercise (P less than 0.05). FHR prior to exercise was 142 +/- 4 beats/min and decreased to 84 +/- 34 beats/min during exercise. The decrease in FHR was documented within 1 min of initiating exercise in all cases. During exercise, fetal movements were not accompanied by FHR accelerations. Within 1 min following the cessation of exercise, FHR rose to 143 +/- 8 beats/min and fetal movements were accompanied by FHR accelerations. Since the recovery of FHR occurred immediately after cessation of maternal exercise, this level of maternal exercise does not appear to be harmful to the fetus.  相似文献   

13.
The purpose of the present study was to use the microdialysis technique to simultaneously measure the interstitial concentrations of several putative stimulators of the exercise pressor reflex during 5 min of intermittent static quadriceps exercise in humans (n = 7). Exercise resulted in approximately a threefold (P < 0.05) increase in muscle sympathetic nerve activity (MSNA) and 13 +/- 3 beats/min (P < 0.05) and 20 +/- 2 mmHg (P < 0.05) increases in heart rate and blood pressure, respectively. During recovery, all reflex responses quickly returned to baseline. Interstitial lactate levels were increased (P < 0.05) from rest (1.1 +/- 0.1 mM) to exercise (1. 6 +/- 0.2 mM) and were further increased (P < 0.05) during recovery (2.0 +/- 0.2 mM). Dialysate phosphate concentrations were 0.55 +/- 0. 04, 0.71 +/- 0.05, and 0.48 +/- 0.03 mM during rest, exercise, and recovery, respectively, and were significantly elevated during exercise. At the onset of exercise, dialysate K(+) levels rose rapidly above resting values (4.2 +/- 0.1 meq/l) and continued to increase during the exercise bout. After 5 min of contractions, dialysate K(+) levels had peaked with an increase (P < 0.05) of 0.6 +/- 0.1 meq/l and subsequently decreased during recovery, not being different from rest after 3 min. In contrast, H(+) concentrations rapidly decreased (P < 0.05) from resting levels (69.4 +/- 3.7 nM) during quadriceps exercise and continued to decrease with a mean decline (P < 0.05) of 16.7 +/- 3.8 nM being achieved after 5 min. During recovery, H(+) concentrations rapidly increased and were not significantly different from baseline after 1 min. This study represents the first time that skeletal muscle interstitial pH, K(+), lactate, and phosphate have been measured in conjunction with MSNA, heart rate, and blood pressure during intermittent static quadriceps exercise in humans. These data suggest that interstitial K(+) and phosphate, but not lactate and H(+), may contribute to the stimulation of the exercise pressor reflex.  相似文献   

14.
Reductions in blood pressure after acute exercise by hypertensive rats   总被引:2,自引:0,他引:2  
Postexercise reductions in blood pressure at rest have been reported for hypertensive subjects. To determine whether post-exercise hypotension would occur in spontaneously hypertensive rats and to test the hypothesis that any reductions would result because of decreases in regional vascular resistances, hypertensive rats (n = 19) were instrumented with indwelling arterial catheters and Doppler probes to measure regional blood flows from the iliac, superior mesenteric, and renal arteries. Data were collected from animals who performed a 20- and a 40-min treadmill test at between 60 and 70% of their maximum O2 uptake. When the animals ran for 20 min, there was a pre- to postexercise drop in mean arterial pressure (MAP) from 158 +/- 3.6 to 150 +/- 3.6 mmHg (P less than 0.05), which was recorded 30 min after the exercise had ceased. The pre- to postexercise reduction in MAP after 40 min of treadmill running was from 154 +/- 3.1 to 138 +/- 3.0 mmHg (P less than 0.05) as recorded 30 min postexercise. Postexercise heart rate was significantly lower after the 40-min exercise bout, from a preexercise mean of 351 +/- 3 beats/min to 324 +/- 5 beats/min 30 min after the treadmill had stopped. Surprisingly, marked pre- to postexercise reductions in regional vascular resistance were not observed in either the iliac, superior mesenteric, or renal vascular beds. These data demonstrated the existence of postexercise hypotension in genetic hypertensive rats and suggested that reductions in cardiac output were the primary hemodynamic mechanism for this finding.  相似文献   

15.
A group of 11 healthy athletes [age, 27.4 (SD 6.7) years; body mass, 75.3 (SD 9.2) kg; height, 182 (SD 8) cm; maximal oxygen uptake, 58.0 (SD 9.9) ml.kg-1.min-1] conducted maximal exercise of 60-s duration on a cycle ergometer [mean exercise intensity, 520 (SD 72) W; maximal lactate concentration, 12.26 (SD 1.35) mmol.l-1]. Adrenaline and noradrenaline, and leucocyte subpopulations were measured flow cytometrically at rest, after 5-min warming up at 50% of each individual's anaerobic threshold (followed by 5-min rest), immediately after (0 min), 15 min, 30 min, and 1, 2, 4 and 24 h after exercise. Granulocytes showed two increases, the first at 15 min and, after return to pre-exercise values, the second more than 2 h after exercise. Eosinophils also increased at 15 min but decreased below pre-exercise values 2 h after exercise. Total lymphocytes and monocytes had their maximal increases at 0 min. Out of all lymphocyte subpopulations CD3-CD16/CD56(+)- and CD8+CD45RO--cells increased most and had their maximal cell counts at 0 min. The CD3(+)-, CD4+CD45RO(+)-, CD8+CD45RO(+)-, and CD19(+)- increased at 0 min, but had their maximum at 15 min. During the hours after exercise CD3-CD16/CD56(+)-, CD3+CD16/CD56(+)-, CD8+CD45RO(+)- and CD8+CD45RO--cells were responsible for the lymphocytopenia. The CD3(+)- and CD3-CD16/CD56(+)-cells were lower 24 h after exercise than before exercise. Adrenaline and noradrenaline increased during exercise. In conclusion, short anaerobic exercise led to a sequential mobilization of leucocyte subpopulations. The rapid increase of natural killer cells and monocytes may have been due to increased blood flow and catecholamine concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The study investigated the effect of training on lactate and H+ release from human skeletal muscle during one-legged knee-extensor exercise. Six subjects were tested after 7-8 wk of training (fifteen 1-min bouts at approximately 150% of thigh maximal O2 uptake per day). Blood samples, blood flow, and muscle biopsies were obtained during and after a 30-W exercise bout and an incremental test to exhaustion of both trained (T) and untrained (UT) legs. Blood flow was 16% higher in the T than in the UT leg. In the 30-W test, venous lactate and lactate release were lower in the T compared with the UT leg. In the incremental test, time to fatigue was 10.6 +/- 0.7 and 8.2 +/- 0.7 min, respectively, in the T and UT legs (P < 0.05). At exhaustion, venous blood lactate was 10.7 +/- 0.4 and 8.0 +/- 0.9 mmol/l in T and UT legs (P < 0.05), respectively, and lactate release was 19.4 +/- 3.6 and 10.6 +/- 2.0 mmol/min (P < 0.05). H+ release at exhaustion was higher in the T than in the UT leg. Muscle lactate content was 59.0 +/- 15.1 and 96.5 +/- 14.5 mmol/kg dry wt in the T and UT legs, and muscle pH was 6.82 +/- 0.05 and 6.69 +/- 0.04 in the T and UT legs (P = 0.06). The membrane contents of the monocarboxylate transporters MCT1 and MCT4 and the Na+/H+ exchanger were 115 +/- 5 (P < 0.05), 111 +/- 11, and 116 +/- 6% (P < 0.05), respectively, in the T compared with the UT leg. The reason for the training-induced increase in peak lactate and H+ release during exercise is a combination of an increased density of the lactate and H+ transporting systems, an improved blood flow and blood flow distribution, and an increased systemic lactate and H+ clearance.  相似文献   

17.
The effect of low muscle temperature on the response to dynamic exercise was studied in six healthy men who performed 42 min of exercise on a cycle ergometer at an intensity of 70% of their maximal O2 uptake. Experiments were performed under control conditions, i.e. from rest at room temperature, and following 45 min standing with legs immersed in a water bath at 12 degrees C. The water bath reduced quadriceps muscle temperature (at 3 cm depth) from 36.4 (SD 0.5) degrees C to 30.5 (SD 1.7) degrees C. Following cooling, exercise heart rate was initially lower, the mean difference ranged from 13 (SD 4) beats.min-1 after 6 min of exercise, to 4 (SD 2) beats.min-1 after 24 min of exercise. Steady-state oxygen uptake was consistently higher (0.2 l.min-1). However, no difference could be discerned in the kinetics of oxygen uptake at the onset of exercise. During exercise after cooling a significantly higher peak value was found for the blood lactate concentration compared to that under control conditions. The peak values were both reached after approximately 9 min of exercise. After 42 min of exercise the blood lactate concentrations did not differ significantly, indicating a faster rate of removal during exercise after cooling. We interpreted these observations as reflecting a relatively higher level of muscle hypoxia at the onset of exercise as a consequence of a cold-induced vasoconstriction. The elevated steady-state oxygen uptake may in part have been accounted for by the energetic costs of removal of the extra lactate released into the blood consequent upon initial tissue hypoxia.  相似文献   

18.
We evaluated whether a reduction in cardiac output during dynamic exercise results in vasoconstriction of active skeletal muscle vasculature. Nine subjects performed four 8-min bouts of cycling exercise at 71 +/- 12 to 145 +/- 13 W (40-84% maximal oxygen uptake). Exercise was repeated after cardioselective (beta 1) adrenergic blockade (0.2 mg/kg metoprolol iv). Leg blood flow and cardiac output were determined with bolus injections of indocyanine green. Femoral arterial and venous pressures were monitored for measurement of heart rate, mean arterial pressure, and calculation of systemic and leg vascular conductance. Leg norepinephrine spillover was used as an index of regional sympathetic activity. During control, the highest heart rate and cardiac output were 171 +/- 3 beats/min and 18.9 +/- 0.9 l/min, respectively. beta 1-Blockade reduced these values to 147 +/- 6 beats/min and 15.3 +/- 0.9 l/min, respectively (P < 0.001). Mean arterial pressure was lower than control during light exercise with beta 1-blockade but did not differ from control with greater exercise intensities. At the highest work rate in the control condition, leg blood flow and vascular conductance were 5.4 +/- 0.3 l/min and 5.2 +/- 0.3 cl.min-1.mmHg-1, respectively, and were reduced during beta 1-blockade to 4.8 +/- 0.4 l/min (P < 0.01) and 4.6 +/- 0.4 cl.min-1.mmHg-1 (P < 0.05). During the same exercise condition leg norepinephrine spillover increased from a control value of 2.64 +/- 1.16 to 5.62 +/- 2.13 nM/min with beta 1-blockade (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
When continuation of exercise calls for a "will," the cerebral metabolic ratio of O2 to (glucose + lactate) decreases, with the largest reduction (30-50%) at exhaustion. Because a larger effort is required to exercise with the arms than with the legs, we tested the hypothesis that the reduction in the cerebral metabolic ratio would become more pronounced during arm cranking than during leg exercise. The cerebral arterial-venous differences for blood-gas variables, glucose, and lactate were evaluated in two groups of eight subjects during exhaustive arm cranking and leg exercise. During leg exercise, exhaustion was elicited after 25 +/- 6 (SE) min, and the cerebral metabolic ratio was reduced from 5.6 +/- 0.2 to 3.5 +/- 0.2 after 10 min and to 3.3 +/- 0.3 at exhaustion (P < 0.05). Arm cranking lasted for 35 +/- 4 min and likewise decreased the cerebral metabolic ratio after 10 min (from 6.7 +/- 0.4 to 5.0 +/- 0.3), but the nadir at exhaustion was only 4.7 +/- 0.4, i.e., higher than during leg exercise (P < 0.05). The results demonstrate that exercise decreases the cerebral metabolic ratio when a conscious effort is required, irrespective of the muscle groups engaged. However, the comparatively small reduction in the cerebral metabolic ratio during arm cranking suggests that it is influenced by the exercise paradigm.  相似文献   

20.
Experiments were conducted to determine whether low-speed swimming during recovery from exhaustive exercise improved both metabolic recovery and performance during a swimming challenge. For these experiments, brook trout were allowed to recover from exhaustive exercise for 2 h while swimming at 0, 0.5, 1.0, or 1.5 body length (BL) s(-1) or allowed to recover from exhaustive exercise for 1, 2, or 3 h while swimming at 1.0 BL s(-1). At the appropriate interval, either (i) muscle and blood samples were removed from the fish or (ii) fish were assessed for performance (i.e., fatigue time) during a fixed-interval swimming test. Low-speed swimming during recovery from exhaustive exercise resulted in significantly longer fatigue times compared with fish recovering in still water (i.e., 0 BL s(-1)). However, swimming during recovery did not expedite recovery of muscle lactate or blood variables (e.g., lactate, osmolarity, glucose). These observations suggest that metabolic recovery and subsequent swimming performance may not be directly linked and that other factors play a role in swimming recovery in brook trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号