首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several lines of evidence suggest that the IκB kinase (IKK)/nuclear factor-κB (NFκB) axis is required for viability of leukemic cells and is a predictor of relapse in T-cell acute lymphoblastic leukemia (T-ALL). Moreover, many anticancer agents induce NFκB nuclear translocation and activation of its target genes, which counteract cellular resistance to chemotherapeutic drugs. Therefore, the design and the study of IKK-specific drugs is crucial to inhibit tumor cell proliferation and to prevent cancer drug-resistance. Here, we report the anti-proliferative effects induced by BMS-345541 (a highly selective IKK inhibitor) in three Notch1-mutated T-ALL cell lines and in T-ALL primary cells from pediatric patients. BMS-345541 induced apoptosis and an accumulation of cells in the G2/M phase of the cell cycle via inhibition of IKK/NFκB signaling. We also report that T-ALL cells treated with BMS-345541 displayed nuclear translocation of FOXO3a and restoration of its functions, including control of p21Cip1 expression levels. We demonstrated that FOXO3a subcellular re-distribution is independent of AKT and ERK 1/2 signaling, speculating that in T-ALL the loss of FOXO3a tumor suppressor function could be due to deregulation of IKK, as has been previously demonstrated in other cancer types.

It is well known that, differently from p53, FOXO3a mutations have not yet been found in human tumors, which makes therapeutics activating FOXO3a more appealing than others. For these features, BMS-345541 could be used alone or in combination with traditional therapies in the treatment of T-ALL.  相似文献   

3.
4.
In T-cell acute lymphoblastic leukemia (T-ALL) NOTCH 1 receptors are frequently mutated. This leads to aberrantly high Notch signaling, but how this translates into deregulated cell cycle control and the transformed cell type is poorly understood. In this report, we analyze downstream responses resulting from the high level of NOTCH 1 signaling in T-ALL. Notch activity, measured immediately downstream of the NOTCH 1 receptor, is high, but expression of the canonical downstream Notch response genes HES 1 and HEY 2 is low both in primary cells from T-ALL patients and in T-ALL cell lines. This suggests that other immediate Notch downstream genes are activated, and we found that Notch signaling controls the levels of expression of the E3 ubiquitin ligase SKP2 and its target protein p27Kip1. We show that in T-ALL cell lines, recruitment of NOTCH 1 intracellular domain (ICD) to the SKP2 promoter was accompanied by high SKP2 and low p27Kip1 protein levels. In contrast, pharmacologically blocking Notch signaling reversed this situation and led to loss of NOTCH 1 ICD occupancy of the SKP2 promoter, decreased SKP2 and increased p27Kip1 expression. T-ALL cells show a rapid G1-S cell cycle transition, while blocked Notch signaling resulted in G0/G1 cell cycle arrest, also observed by transfection of p27Kip1 or, to a smaller extent, a dominant negative SKP2 allele. Collectively, our data suggest that the aberrantly high Notch signaling in T-ALL maintains SKP2 at a high level and reduces p27Kip1, leading to more rapid cell cycle progression.  相似文献   

5.
Activating mutations in NOTCH1 are the most prominent genetic abnormality in T-cell acute Lymphoblastic Leukemia (T-ALL) and inhibition of NOTCH1 signaling with γ-secretase inhibitors (GSIs) has been proposed as targeted therapy in this disease. However, most T-ALL cell lines with mutations in NOTCH1 fail to respond to GSI therapy. Using gene expression profiling and mutation analysis we showed that mutational loss of PTEN is a common event in T-ALL and is associated with resistance to NOTCH inhibition. Furthermore, our studies revealed that NOTCH1 induces upregulation of the PI3K-AKT pathway via HES1, which negatively controls the expression of PTEN. This regulatory circuitry is evolutionary conserved from Drosophila to humans as demonstrated by the interaction of overexpression of Delta and Akt in a model of Notch-induced transformation in the fly eye. Loss of PTEN and constitutive activation of AKT in T-ALL induce increased glucose metabolism and bypass the requirement of NOTCH1 signaling to sustain cell growth. Importantly, PTEN-null/GSI resistant T-ALL cells switch their oncogene addiction from NOTCH1 to AKT and are highly sensitive to AKT inhibitors. These results should facilitate the development of molecular therapies targeting NOTCH1 and AKT for the treatment of T-ALL.  相似文献   

6.
To better understand the roles of TGF-β in bone metabolism, we investigated osteoclast survival in response TGF-β and found that TGF-β inhibited apoptosis. We examined the receptors involved in promotion of osteoclast survival and found that the canonical TGF-β receptor complex is involved in the survival response. The upstream MEK kinase TAK1 was rapidly activated following TGF-β treatment. Since osteoclast survival involves MEK, AKT, and NFκB activation, we examined TGF-β effects on activation of these pathways and observed rapid phosphorylation of MEK, AKT, IKK, IκB, and NFκB. The timing of activation coincided with SMAD activation and dominant negative SMAD expression did not inhibit NFκB activation, indicating that kinase pathway activation is independent of SMAD signaling. Inhibition of TAK1, MEK, AKT, NIK, IKK, or NFκB repressed TGF-β-mediated osteoclast survival. Adenoviral-mediated TAK1 or MEK inhibition eliminated TGF-β-mediated kinase pathway activation and constitutively active AKT expression overcame apoptosis induction following MEK inhibition. TAK1/MEK activation induces pro-survival BclXL expression and TAK1/MEK and SMAD pathway activation induces pro-survival Mcl-1 expression. These data show that TGF-β-induced NFκB activation is through TAK1/MEK-mediated AKT activation, which is essential for TGF-β to support of osteoclast survival.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Peng H  Wen J  Li H  Chang J  Zhou X 《PloS one》2011,6(3):e14750
Nuclear factor κB (NFκB) activation plays a crucial role in anti-apoptotic responses in response to the apoptotic signaling during tumor necrosis factor (TNFα) stimulation in Multiple Myeloma (MM). Although several drugs have been found effective for the treatment of MM by mainly inhibiting NFκB pathway, there are not any quantitative or qualitative results of comparison assessment on inhibition effect between different drugs either used alone or in combinations. Computational modeling is becoming increasingly indispensable for applied biological research mainly because it can provide strong quantitative predicting power. In this study, a novel computational pathway modeling approach is employed to comparably assess the inhibition effects of specific drugs used alone or in combinations on the NFκB pathway in MM and to predict the potential synergistic drug combinations.  相似文献   

14.
15.
It is well-established that the activation of the inhibitor of NFκB (IκBα) kinase (IKK) complex is required for autophagy induction by multiple stimuli. Here, we show that in autophagy-competent mouse embryonic fibroblasts (MEFs), distinct autophagic triggers, including starvation, mTOR inhibition with rapamycin and p53 inhibition with cyclic pifithrin α lead to the activation of IKK, followed by the phosphorylation-dependent degradation of IκBα and nuclear translocation of NFκB. Remarkably, the NFκB signaling pathway was blocked in MEFs lacking either the essential autophagy genes Atg5 or Atg7. In addition, we found that tumor necrosis factor α (TNFα)-induced NFκB nuclear translocation is abolished in both Atg5- and Atg7-deficient MEFs. Similarly, the depletion of essential autophagy modulators, including ATG5, ATG7, Beclin 1 and VPS34, by RNA interference inhibited TNFα-driven NFκB activation in two human cancer cell lines. In conclusion, it appears that, at least in some instances, autophagy is required for NFκB activation, highlighting an intimate crosstalk between these two stress response signaling pathways.  相似文献   

16.
We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NFκB) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NFκB activation, as indicated by NFκB DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NFκB DNA binding after 1 h of ventilation and decreased NFκB DNA binding after 2 h of ventilation, as compared with controls. The early activation of NFκB during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NFκB activation using SN50 reversed these protective effects. NFκB activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the cytoprotective effects of hydrogen against apoptotic and inflammatory signaling pathway activation during VILI.  相似文献   

17.
Astrocytes become hypertrophic reactive in response to the ischemic stress, and they contribute to either protect or exacerbate neuronal damage, depending on the depth or duration of the stress. Astrocytes have more resistance to the ischemic stress than neurons, which is apparently due to active anerobic metabolic pathway in the emergency situation. We have been focused on the functional role of astrocytic glucose transporters in the ischemic condition. Under the physiological conditions, cultured astrocytes primarily express glucose transporter1 (GLUT1), and GLUT3 is only detected at extremely low levels. But astrocytes enhance GLUT3 expression through the signaling of nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κB) under mild ischemic condition. It is reasonable since GLUT3 transports extracellular glucose about seven times faster than GLUT1, so astrocytes enhance the storage of intracellular glucose during the ischemia. However, other signaling cascades that regulate GLUT3 production remain unknown. Here we demonstrate that extracellular adenosine 5′-triphosphate (ATP)-P2Y receptor signaling also regulates GLUT3 expression. Under mild ischemic condition, astrocytes positively released existing intracellular or newly synthesized ATP by AMP-activated protein kinase (AMPK) signaling. The released extracellular ATP from pore channels activated ATP-sensitive P2Y receptor signaling, resulting in an increase in c-Fos and c-Jun proteins. Newly synthesized GLUT3 was regulated by those signaling since the inhibition of P2Y receptors or c-Fos/c-Jun signaling significantly reduced GLUT3 expression. Furthermore, the inhibition of P2Y receptors during the ischemic condition sustained intracellular ATP concentration, leading to a decrease in AMPK proteins. These results suggest AMPK-regulated ATP production triggers the release of ATP to activate P2Y receptor signaling, which is another candidate that regulates GLUT3 expression under the ischemic condition.  相似文献   

18.
Ascertaining the upstream regulatory mechanisms of hyperthermia‐induced apoptosis is important to understand the role of hyperthermia in combined modality cancer therapy. Accordingly, we investigated whether (i) hyperthermia‐induced apoptosis is mediated through the nitric oxide (NO) signaling pathway and (ii) inhibition of post‐translational modification of IκBα and down regulation of NFκB‐DNA binding activity is an intermediate step in NO‐dependent apoptosis in MCF‐7 breast cancer cells. For hyperthermia treatment, the cells were exposed to 43°C. Intracellular NO levels measured by the fluorescent intensity of DAF‐2A and iNOS expression by immunobloting revealed an increased level of iNOS dependent NO production after 43°C. Apoptosis measured by Annexin V expression and cell survival by clonogenic assay showed a 20% increase in apoptosis after 43°C treatments. EMSA analysis showed a dose‐dependent inhibition of NFκB‐DNA binding activity. The hyperthermia‐mediated inhibition of NFκB was persistent even after 48 h. Inhibition of NO by L ‐NAME rescued the NFκB‐DNA binding activity and inhibits heat‐induced apoptosis. Similarly, over‐expression of NFκB by transient transfection inhibits heat‐induced apoptosis. These results demonstrate that apoptosis upon hyperthermia exposure of MCF‐7 cells is regulated by NO‐mediated suppression of NFκB. J. Cell. Biochem. 106: 999–1009, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号