首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple surface modification method, comprising of a thin coating with gold nanoparticles (AuNPs) and fibronectin (FN), was developed to improve the biocompatibility required for cardiovascular devices. The nanocomposites from FN and AuNPs (FN-Au) were characterized by the atomic force microscopy (AFM), UV-Vis spectrophotometry (UV-Vis), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility of the nanocomposites was evaluated by the response of monocytes and platelets to the material surface in vitro. FN-Au coated surfaces demonstrated low monocyte activation and platelet activation. The behavior of human umbilical cord-derived mesenchymal stem cells (MSCs) on FN-Au was further investigated. MSCs on FN-Au nanocomposites particularly that containing 43.5 ppm of AuNPs (FN-Au 43.5 ppm) showed cell proliferation, low ROS generation, as well as increases in the protein expression levels of matrix metalloproteinase-9 (MMP-9) and endothelial nitric oxide synthase (eNOS), which may account for the enhanced MSC migration on the nanocomposites. These results suggest that the FN-Au nanocomposite thin film coating may serve as a potential and simple solution for the surface modification of blood-contacting devices such as vascular grafts.  相似文献   

2.
Novel nanocomposites based on type I collagen (Col) containing a small amount (17.4, 43.5, and 174 ppm) of gold nanoparticles (AuNPs, approximately 5 nm) were prepared in this study. The pure Col and Col-AuNP composites (Col-Au) were characterized by the UV-Vis spectroscopy (UV-Vis), surface-enhanced raman spectroscopy (SERS) and atomic force microscopy (AFM). The interaction between Col and AuNPs was confirmed by infrared (IR) spectra. The effect of AuNPs on the biocompatibility of Col, evaluated by the proliferation and reactive oxygen species (ROS) production of mesenchymal stem cells (MSCs) as well as the activation of monocytes and platelets, was investigated. Results showed that Col-Au had better biocompatibility than Col. Upon stimulation by vascular endothelial growth factor (VEGF) and stromal derived factor-1α (SDF-1α), MSCs expressed the highest levels of αvβ3 integrin/CXCR4, focal adhesion kinase (FAK), matrix metalloproteinase-2 (MMP-2), and Akt/endothelial nitric oxide synthase (eNOS) proteins when grown on the Col-Au (43.5 ppm) nanocomposite. Taken together, Col-Au nanocomposites may promote the proliferation and migration of MSCs and stimulate the endothelial cell differentiation. These results suggest that Col-Au may be used to construct tissue engineering scaffolds for vascular regeneration.  相似文献   

3.
The effect of a recombinant RGD (arginine-glycine-aspartic acid)-containing fusion protein, cellulose-binding domain (CBD)-RGD, on the cellular adhesion to a biomedical polyurethane (PU) was evaluated. A series of different cell lines, as well as freshly harvested animal cells, were grown on the PU surfaces with or without CBD-RGD, in serum or serum-free media. The results showed that the enhancement of cellular attachment by CBD-RGD varied with cell types. This is believed to be a result of the unique integrin receptors on each type of cell surface. The existence of certain divalent ions (Mg2+ and Mn2+) may increase the efficacy of the CBD-RGD, in a cell type-dependent manner. The fusion protein was also found to inhibit the platelet activation. The effect of CBD-RGD was further examined in two other substrate materials, poly(L-lactide) (PLLA) and poly(lactide-co-glycolide) (PLGA). The effect on cellular adhesion correlated with the amount of CBD-RGD physically adsorbed on the material surface.  相似文献   

4.
One of the most important challenges in tissue engineering research is the development of biomimetic materials. In this present study, we have investigated the effect of the titanium dioxide (TiO2) nanoparticles on the properties of electrospun mats of poly (hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), to be used as scaffold. The morphology of electrospun fibers was observed by scanning electron microscopy (SEM). Both pure PHBV and nanocomposites fibers were smooth and uniform. However, there was an increase in fiber diameter with the increase of TiO2 concentration. Thermal properties of PHBV and nanocomposite mats were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC analysis showed that the crystallization temperature for PHBV shifts to higher temperature in the presence of the nanoparticles, indicating that TiO2 nanoparticles change the process of crystallization of PHBV due to heterogeneous nucleation effect. TGA showed that in the presence of the nanoparticles, the curves are shifted to lower temperatures indicating a decreasing in thermal stability of nanocomposites compared to pure PHBV. To produce scaffolds for tissue engineering, it is important to evaluate the biocompatibility of the material. Cytotoxicity assay showed that TiO2 nanoparticles were not cytotoxic for cells at the concentration used to synthesize the mats. The proliferation of cells on the mats was evaluated by the MTT assay. Results showed that the nanocomposite samples increased cell proliferation compared to the pure PHBV. These results indicate that continuous electrospun fibrous scaffolds may be a good substrate for tissue regeneration.  相似文献   

5.
Antiviral activity of the TiO2·PL·DNA nanobiocomposites was studied on the MDCK cell culture infected with influenza A virus (subtype H3N2). DNA fragments in the nanocomposites are electrostatically bound to titanium dioxide nanoparticles precovered with polylysine. It was shown that TiO2·PL·DNA(v3′) nanocomposite bearing the DNA(v3′) fragment targeted to the 3′-end of the noncoding region of segment 5 of viral RNA specifically inhibited the virus reproduction with the efficiency of 99.8% and 99.9% (i.e., by factors of ~400 and 1000, respectively) at a low concentration of DNA(v3′) in nanocomposite (0.1 and 0.2 μM, respectively). The TiO2·PL·DNA(r) nanocomposite containing an oligonucleotide noncomplementary to viral RNA or oligonucleotide DNA(v3′) unbound to the nanoparticles show very low antiviral activity (inhibition by factors of ~3.5 and 1.3, respectively).  相似文献   

6.
This study sought to evaluate the in vitro biological response of human gingival fibroblasts (HGFs) co-coltured with Streptococcus mitis to bisphenol A glycidylmethacrylate/triethylene glycol dimethacrylate (BisGMA/TEGDMA) thermosets coated with Chitlac-nAg, a nanocomposite system with antimicrobial properties. To avoid bacterial adhesion to dental devices and to reduce cytotoxicity against eukaryotic cells, we coated BisGMA/TEGDMA methacrylic thermosets with a new material, Chitlac-nAg, formed by stabilizing silver nanoparticles, which have well-known antimicrobial properties, with a polyelectrolyte solution containing Chitlac. Cytotoxicity, cell morphology, cell migration and inflammatory interleukine-6 (IL-6) and prostaglandin E2 (PGE2) secretion were evaluated. Our results showed that the cytotoxicity exerted on HGFs by our nanocomposite material was absent in our co-culture model, where fibroblasts are able to adhere and migrate. After 24 h thermosets coated with Chitlac as well as those coated with Chitlac-nAg exerted a minimal cytotoxic effect on HGFs, while after 48 h LDH release rises up 20%. Moreover the presence of S. mitis reduced this release in a greater amount with Chitlac-nAg coated thermosets. The secretion of IL-6 was significant in both Chitlac and Chitlac-nAg coated thermosets, but PGE2 production was minimal, suggesting that the IL-6 production was not related to an inflammatory response. Co-culture and the addiction of saliva did not influence IL-6 and PGE2 secretion. Data obtained in the present work suggest that Chitlac n-Ag coated thermosets could significantly improve the success rates of restorative dentistry, since they limit bacterial adhesion and are not toxic to HGFs.  相似文献   

7.
Kim JW  Kim LU  Kim CK 《Biomacromolecules》2007,8(1):215-222
Nearly monodispersed silica nanoparticles having a controlled size from 5 to 450 nm were synthesized via a sol-gel process, and then the optimum conditions for the surface treatment of the synthesized silica nanoparticles with a silane coupling agent (i.e., 3-methacryloxypropyltrimethoxysilane (gamma-MPS)) were explored to produce dental composites exhibiting enhanced adhesion and dispersion of silica nanoparticles in the resin matrix. The particle size was increased by increasing amounts of the catalyst (NH4OH) and silica precursor (tetraethylorthosilicate, TEOS) and by decreasing the amount of water in the reaction mixtures regardless of solvents used for the synthesis. The particle size prepared by using ethanol as a solvent was significantly larger than that prepared by using methanol as a solvent when the composition of the reaction mixture was fixed. The nanosized particles in the 5-25 nm range were aggregated. The amount of grafted gamma-MPS on the surface of the synthesized silica nanoparticles was dependent on the composition of the reaction mixture when an excess amount of gamma-MPS was used. When surface treatment was performed at optimum conditions found here, the amount of the grafted gamma-MPS per unit surface area of the silica nanoparticles was nearly the same regardless of the particle size. Dispersion of the silica particles in the resin matrix and interfacial adhesion between silica particles and resin matrix were enhanced when surface treated silica nanoparticles were used for preparing dental nanocomposites.  相似文献   

8.
The one-step hydrothermal synthesis of Pd nanoparticles with RGO-ZnO nanocomposites finds promising applications in antimicrobial, antioxidant, cytotoxicity activities. Synthesized graphene oxide was mixed with ZnO, PdCl4, to form Pd-RGO-ZnO nanocomposite, without using any chemical reductants. Nanocomposite was characterized by several techniques. X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd on the RGO-ZnO sheets. Fourier transform infrared spectroscopy (FT-IR), confirmed the presence of functional groups. Scanning electron microscopic (SEM) observations showed uniform morphology. The SAED patterns of the Transmission electron microscopic studies (TEM) revealed that the prepared Pd-RGO-ZnO nanocomposite patterns were recorded and it was represented to (200), (001), planes which were highly supported by its XRD analysis. Synthesized nanocomposites exhibited excellent performance towards biological activities.  相似文献   

9.
Previous research from our group has demonstrated that bromoalkylation of polyurethane elastomers via base mediated activation of the urethane-hard segment nitrogen groups can be used to either attach bisphosphonate groups to confer calcification resistance or append cholesterol to promote endothelial cell adhesion. In the present studies we further explore the potential of this chemical approach by investigating bulk carboxylation of polyurethanes via bromoalkylation to enable surface heparinization for thromboresistance. Thus, polyurethane (PU) was modified with pendant 7-carboxy-5-thiaheptyl groups using a polymer-analogous reaction of bromobutylated PU with tetrabutylammonium 3-mercaptopropionate in mild conditions. The grafting of polyallylamine (PAA) onto the surface of carboxylated PU via direct coupling of amino and carboxy groups resulted in high levels of PAA (up to 8 mug/cm(2)). The surface-aminated PU was further covalently modified with unfractionated heparin as confirmed by FTIR. Fluorescence labeling of PAA hydrochloride and heparin with BODIPY-FL was used to quantify the extent of surface modifications. Heparin was covalently bound at a high level (1.11 +/- 0.06 mug/cm(2)) and was shown to be active, with demonstrable Factor Xa inhibition and platelet factor IV binding. It is concluded that surface amination of bulk-carboxylated PU represents a novel approach for heparinizing PU; carboxylation followed by surface amination represents another important dimension of bromo-alkyl activation of polyurethane hard segments, thereby enabling heparinization.  相似文献   

10.
A novel enzymatic hydrogen peroxide sensor was successfully fabricated based on the nanocomposites containing of Ag/C nanocables and gold nanoparticles (AuNPs). Ag/C nanocables have been synthesized by a hydrothermal method and then AuNPs were assembled on the surface of Ag/C nanocables. The nanocomposites were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). The above nanocomposites have satisfactory chemical stability and excellent biocompatibility. Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of the Ag/C/Au nanocomposites at glassy carbon electrode (GCE). The results indicated that the Ag/C/Au nanocomposites exhibited excellent electrocatalytic activity to the reduction of H(2)O(2). It offered a linear range of 6.7×10(-9) to 8.0×10(-6) M, with a detection limit of 2.2×10(-9) M. The apparent Michaelis-Menten constant of the biosensor was 51.7×10(-6) M. These results indicated that Ag/C/Au nanocomposites have potential for constructing of a variety of electrochemical biosensors.  相似文献   

11.
Ding L  Hao C  Xue Y  Ju H 《Biomacromolecules》2007,8(4):1341-1346
A novel nanocomposites gel was prepared by neutralizing a designer nanocomposites solution of chitosan encapsulated gold nanoparticles formed by reducing in situ tetrachloroauric acid in chitosan. The bio-inspired gel was designed for immobilization and electrochemical study of cells and monitoring adhesion, proliferation, and apoptosis of cells on electrodes. Using K562 leukemia cells as a model, an impedance cell sensor was constructed. The methods for preparation of the gel and immobilization of cells were simple and "green". The nanocomposites gel showed improved immobilization capacity for cells and good biocompatibility for preserving the activity of immobilized living cells. The living cells immobilized on glassy carbon electrode exhibited an irreversible voltammetric response and increased the electron-transfer resistance with a good correlation to the logarithmic value of concentration ranging from 1.34 x 10(4) to 1.34 x 10(8) cells mL-1 with a limit of detection of 8.71 x 10(2) cells mL-1 at 10sigma. This work implied that the nanocomposites gel based on biopolymer and nanoparticles possessed potential applications for biosensing and provided a new avenue for electrochemical investigation of cell adhesion, proliferation, and apoptosis.  相似文献   

12.
The adhesion of TiO(2) (anatase structure) nanoparticles to kaolinite substrate was investigated using molecular modeling. Universal force field computation, density function theory computation, and a combination of both two approaches were used. This study enabled the adhesion energy for the TiO(2)/kaolinite nanocomposite to be estimated, and revealed the preferred orientation of the TiO(2) nanoparticles on the kaolinite substrate. The results of all three levels of computation were compared in order to show that the accuracy of universal force field computations is sufficient in this context. The role of nanoparticle size and the importance of the nanoparticle-substrate bonding contribution are presented here and discussed. A comparison of the molecular modeling results with scanning electron microscopy observations showed that the results of the modeling were consistent with the experimental data, and that this approach can be used to help characterize nanocomposites of the nanoparticle/phyllosilicate substrate type.  相似文献   

13.
Viability tests by the colony forming method show no toxicity for all CDs (beta-CD, gamma-CD, HPbeta-CD and HPgamma-CD) and their associated polymer. A survival rate of 100% is observed for all CDs at high concentration 400 ppm. Proliferation tests revealed a low proliferation of L132 cells on grafted vascular prostheses and untreated prostheses and good proliferation on Melinex (film form of PET). A proliferation of 17% is observed after 3 days of incubation and decrease at 4% after 6 days on prostheses. Melinex exhibits a proliferation rate as the controls. Vitality tests confirm proliferation tests and show a good vitality of cells even for low cell amounts. From these experiments it becomes obvious that the decreasing proliferation rate is not a cytotoxic effect but is due to the chemical and/or physical surface characteristics. A similar result is obtained for cell adhesion kinetics between grafted vascular prostheses and control. After 2 h adhesion, a lower adhesion is observed on untreated prostheses. Theses results were confirmed by immunochemistry and morphology tests. This cell adhesion inhibiting effect of the PET prostheses contributes to a better "survival" of vascular prostheses without secondary obstruction or stenosis.  相似文献   

14.
Platelet adhesion and activation induced by fibrinogen (Fbg) coating on polysaccharide layers of hyaluronic acid (Hyal) and its sulfated derivative (HyalS) were analyzed. Hyal or HyalS was coated and grafted on the glass substrate using a photolithographic method. The Fbg coating was achieved by two different routes: the immobilization of Fbg by means of covalent bond to the polysaccharide layers and the mere adsorption of Fbg to Hyal and HyalS surfaces. Platelet adhesion and activation to the surfaces were evaluated using, respectively, scanning electron microscopy (SEM) and quantifying the release of Platelet Factor 4 by ELISA. The method used for the coating of the surfaces with the Fbg influenced the platelet response. In fact, platelet adhesion and activation took place on surfaces covered by bound Fbg but not on those containing adsorbed Fbg. To explain this difference, the molecular mechanism involved in the Fbg--platelet interaction was investigated blocking platelet membrane receptors by monoclonal antibodies. Because the interaction between Fbg and the GPIIb/IIIa platelet membrane receptor was the only molecular pathway involved, Fbg conformation after the interaction (adsorption or binding) with the Hyal and the HyalS chains and the role of serum proteins adsorbed on the Fbg containing surfaces were accurately analyzed. Both adsorbed and bound Fbg prevented the adsorption of further serum proteins; consequently, a direct interaction between Fbg and platelets was supposed and the different platelet behavior was ascribed to the different conformational changes that occurred after the adsorption and the chemical binding of the Fbg to the Hyal and HyalS surfaces.  相似文献   

15.
In this study, the synthesis of SBA-15/Ag nanocomposite materials with different amounts of silver (2.5, 5, and 10 %) has been investigated under acidic conditions by using P123 as a template via the direct method. The nanocomposites of SBA-15 were synthesized by the same method and by the addition of silver salt. Finally, the nanocomposite materials were examined for the removal of mercury ions from wastewater as an adsorbent by the reverse titration method. Characterization was carried out through x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption-desorption (Brunauer–Emmett–Teller). XRD spectra confirmed the presence of silver nanoparticles within the amorphous silica matrix of SBA-15. The Barrett–Joyner–Halenda analysis showed that SBA-15 and SBA-15/Ag have a narrow pore size distribution. SEM images demonstrated that the morphology of the matrix of SBA-15 is in spherical state. Furthermore, wavelength dispersive x-ray spectroscopy identified the presence and distribution of silver nanoparticles inside the pore channels and outside of them. Typical TEM images of SBA-15 and SBA-15/Ag (5 wt.%) indicated a regular hexagonal pore structure with long-range order and long channels. In SBA-15/Ag (5 wt.%) sample, the nanoparticles of silver was found into the pores and outside of them. The removal of mercury ions from wastewater using mesoporous silica nanocomposite containing silver nanoparticles was studied by the reverse titration analysis. The best capacity of adsorption of mercury ions from wastewater was obtained for SBA-15/Ag (5 wt.%) sample, which was equal to 42.26 mg/g in 20 min at pH of 7. The Freundlich model was used to explain the adsorption characteristics for the heterogeneous surface, and \( {K}_{\mathrm{f}} \) (adsorption capacity) and n (adsorption intensity) were determined for Hg (II) ion adsorption on SBA-15/Ag nanocomposite materials with different amounts of silver (2.5, 5, and 10 %). The value of R 2 was about 0.99, 0.99, 0.98, and 0.98 and K f was about 42, 48, 58, and 58 mg/g for SBA-15/Ag, SBA-15/Ag (2.5 %), SBA-15/Ag (5 %), and SBA-15/Ag (10 %), respectively. Furthermore, the values of n >1 show a favorable adsorption process for Hg (II) ion adsorption on SBA-15/Ag nanocomposite materials. Moreover, the Langmuir isotherm model evaluation showed that the correlation coefficients for all concentrations were R 2 >0.99, indicating that Hg (II) ions were adsorbed on the surface of SBA-15/Ag via chemical and physical interaction. Additionally, the analytic hierarchy process (AHP) and Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) methods that depend on the criteria of the surface area, amount of adsorbent, pore volume, and cost of synthesis were used. The evaluation of results showed that the best sample was SBA-15/Ag (5 wt.%). Furthermore, the research work highlighted the antibacterial nanocomposite with suitable adsorption of Hg (II) ions from water solutions and supported its potential for environmental applications. This nanocomposite can be used in the absorption domain of Hg (II) ions from water solutions.  相似文献   

16.
In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers   总被引:3,自引:1,他引:2  
CdS nanoparticles have been synthesized and stabilized on unique bacterial cellulose (BC) nanofibers in situ. The obtained nanocomposite material have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier transformed infrared (FTIR), thermogravimetric analysis (TGA), ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy. The results indicated that CdS nanoparticles of about 30 nm diameter deposited on BC nanofibres are well-dispersed in the BC nanofibre-network and the uniform spherical CdS nanoparticles are comprised of nano-sized CdS crystal. Moreover, the crystallite sizes of CdS crystals are about 8 nm. The nanocomposites would have potential application as photocatalyst, novel luminescence and photoelectron transfer devices.  相似文献   

17.
We have developed a nanocomposite using a silica nanocomposite polyhedral oligomeric silsesquioxane (POSS) and poly(carbonate-urea)urethane (PCU) for potential use in cardiovascular bypass grafts and the microvascular component of artificial capillary beds. In this study, we sought to compare its antithrombogenicity to that of conventional polymers used in vascular bypass grafts so as to improve upon current patency rates, particularly in the microvascular setting. Using atomic force microscopy (AFM) and transmission electron microscopy (TEM), surface topography and composition were studied, respectively. The ability of the nanocomposite surface to repel both proteins and platelets in vitro was assessed using thromboelastography (TEG), fibrinogen ELISA assays, antifactor Xa assays, scanning electron microscopy (SEM), and platelet adsorption tests. TEG analysis showed a significant decrease in clot strength (one-way ANOVA, p < 0.001) and increase in clot lysis (one-way ANOVA, p < 0.0001) on the nanocomposite when compared to both poly(tetrafluoroethylene) (PTFE) and PCU. ELISA assays indicate lower adsorption of fibrinogen to the nanocomposite compared to PTFE (one-way ANOVA, p < 0.01). Interestingly, increasing the concentration of POSS nanocages within these polymers was shown to proportionately inhibit factor X activity. Platelet adsorption at 120 min was also lower compared to PTFE and PCU (two-way ANOVA, p < 0.05). SEM images showed a "speckled" morphologic pattern with Cooper grades I platelet adsorption morphology on the nanocomposite compared to PTFE with grade IV morphology. On the basis of these results, we concluded that POSS nanocomposites possess greater thromboresistance than PTFE and PCU, making it an ideal material for the construction of both bypass grafts and microvessels.  相似文献   

18.
Nanomaterials offer a number of properties that are of interest to the field of neural tissue engineering. Specifically, materials that exhibit nanoscale surface dimensions have been shown to promote neuron function while simultaneously minimizing the activity of cells such as astrocytes that inhibit central nervous system regeneration. Studies demonstrating enhanced neural tissue regeneration in electrical fields through the use of conductive materials have led to interest in piezoelectric materials (or those materials which generate a transient electrical potential when mechanically deformed) such as zinc oxide (ZnO). It has been speculated that ZnO nanoparticles possess increased piezoelectric properties over ZnO micron particles. Due to this promise in neural applications, the objective of the present in vitro study was, for the first time, to assess the activity of astroglial cells on ZnO nanoparticle polymer composites. ZnO nanoparticles embedded in polyurethane were analyzed via scanning electron microscopy to evaluate nanoscale surface features of the composites. The surface chemistry was characterized via X-ray photoelectron spectroscopy. Astroglial cell response was evaluated based on cell adhesion and proliferation. Astrocyte adhesion was significantly reduced on ZnO nanoparticle/polyurethane (PU) composites with a weight ratio of 50:50 (PU:ZnO) wt.%, 75:25 (PU:ZnO) wt.%, and 90:10 (PU:ZnO) wt.% in comparison to pure PU. The successful production of ZnO nanoparticle composite scaffolds suitable for decreasing astroglial cell density demonstrates their potential as a nerve guidance channel material with greater efficiency than what may be available today.  相似文献   

19.
Nanocomposite thin films consisting of Cu nanoparticles embedded in silica matrix were synthesized by atom beam co-sputtering technique. Plasmonic, optical, and structural properties of the nanocomposite films were investigated by using ultraviolet (UV)–visible absorption spectroscopy, nonlinear optical transmission, X-ray diffraction (XRD), and low-frequency Raman scattering. UV–visible absorption studies revealed the surface plasmon resonance absorption at 564 nm which showed a red shift with increase in Cu fraction. XRD results together with surface plasmon resonance absorption confirmed the presence of Cu nanoparticles of different size. Low-frequency Raman studies of nanocomposite films revealed breathing modes in Cu nanoparticles. Nanocomposites with lower metal fractions were found to behave like optical limiters. The possibility of controllably tuning the optical nonlinearity of these nanocomposites could enable them to be the potential candidates for applications in nanophotonics.  相似文献   

20.
Designing a nanocomposite that accumulates biocompatibility and antimicrobial behaviour is an essential requirement for biomedical applications. Hydroxyapatite (HAP), graphene oxide, and vivianite in one ternary nanocomposite with three phases and shapes led to an increase in cell viability to 97.6% ± 4 for the osteoblast cells in vitro. The obtained nanocomposites were investigated for their structural features using X-ray diffraction, while the microstructure features were analyzed using a scanning electron microscope (SEM) and a transmission electron microscope. The analysis showed a decrease in the crystal size to 13 nm, while the HAP grains reached 30 nm. The elongated shape of vivianite reached 200 nm on SEM micrographs. The monoclinic and hexagonal crystal systems of HAP and vivianite were presented in the ternary nanocomposite. The maximum roughness peak height reached 236.1 nm for the ternary nanocomposite from 203.3 nm, while the maximum height of the roughness parameter reached 440.7 nm for the di-nanocomposite of HAP/graphene oxide from 419.7 nm. The corrosion current density reached 0.004 μA/cm2. The ferrous (Fe2+) and calcium (Ca2+) ions released were measured and confirmed. Therefore, the morphology of the nanocomposites affected bacterial activity. This was estimated as an inhibition zone and reached 14.5 ± 0.9 and 13.4 ± 1.1 mm for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 24 h. The increase in viability and the antibacterial activity refer to the compatibility of the nanocomposite in different medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号