首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
肠膜状明串珠菌在其产生的右旋糖酐蔗糖酶的作用下,以蔗糖为原料转化合成右旋糖酐和产生果糖。着重进行了Mn~(2+)对肠膜状明串珠菌Lm-1226发酵产右旋糖酐影响的初步探索。对Mn~(2+)对肠膜状明串珠菌Lm-1226的生长,产果糖、右旋糖酐和右旋糖酐蔗糖酶,右旋糖酐蔗糖酶作用影响进行了研究。一定浓度的Mn~(2+)对肠膜状明串珠菌Lm-1226的生长具有促进作用; Mn~(2+)抑制肠膜状明串珠菌Lm-1226发酵产果糖和右旋糖酐,且Mn~(2+)浓度越高,抑制性越强; Mn~(2+)对肠膜状明串珠菌Lm-1226发酵产右旋糖酐蔗糖酶有抑制作用; Mn~(2+)对右旋糖酐蔗糖酶具有较强的激活作用,激活作用可达158%,最适Mn~(2+)浓度为5. 0 mmol/L。  相似文献   

2.
The present studies show that the colloidal calcium phosphate of cow's milk has a (Ca + Mg)/Pi ratio of 1.67 (± 0.10; n = 22) and contains citrate, Mg and Zn at molar ratios to Ca averaging 0.05, 0.03 and 0.003, respectively. The composition of the natural colloidal phosphate of milk is similar to the precipitates formed by neutralization of ultrafiltrates obtained from acidified milks, and to that of the calcium phosphate-enriched fraction produced by extensive enzymic hydrolysis of the casein micelles in milk. Examination by electron microscopy of these artificial preparations of milk calcium phosphate revealed in both a very fine and uniform substructure which consisted of granules having an average, true diameter of approx. 2.5 nm. The size and shape of these tiny granules closely resemble the morphologies reported for the colloidal phosphate particles in native casein micelles, as well as for the subunits of amorphous calcium phosphate observed during calcification in other biological systems such as mitochondria and bone.  相似文献   

3.
A new isolate of Salmonella, strain MR4, reduced Mn(IV)O2 at 2.3 mM under aerobic conditions by about 83% over 24 h. Direct contact of cells to MnO2 was not necessary as the cell-free spent medium produced a similar amount of Mn(II). Pyruvate (1.6 mM) and oxalate (0.8 mM) were identified in the culture medium and presumed to have a role in Mn(II) production in this microorganism.  相似文献   

4.
Contact of Jurkat T-lymphocytes with the extracellular matrix (ECM) protein laminin resulted in long-lasting α6β1-integrin-mediated Ca2+ signalling. Both Ca2+ release from thapsigargin-sensitive Ca2+ stores and capacitative Ca2+ entry via Ca2+ channels sensitive to SKF 96365 constitute important parts of this process. Inhibition of α6β1-integrin-mediated Ca2+ signalling by (1) the src kinase inhibitor PP2, (2) the PLC inhibitor U73122, and (3) the cyclic adenosine diphosphoribose (cADPR) antagonist 7-deaza-8-Br-cADPR indicate the involvement of src tyrosine kinases and the Ca2+-releasing second messengers d-myo-inositol 1,4,5-trisphosphate (InsP3) and cADPR.  相似文献   

5.
The gene for a novel cation/H+ antiporter from Puccinellia tenuiflora, PutCAX1, was cloned from a cDNA library. The PutCAX protein was localized in the vacuolar membrane using a GFP marker. Several yeast transformants were created using full-length and truncated form of PutCAX1 and their growths in the presence of various cations (Mg2+, Ca2+, Mn2+, Ni2+, Cu2+, Zn2+, Se2+, and Ba2+) were analyzed. PutCAX1 expression was found to affect the response to Ca2+ and Ba2+ in yeast. The PutCAX1 and C-terminally truncated PutCAX1 (ΔCPutCAX1) transformants grew in the presence of 70 mM Ca2+ as well as in the presence of 8 mM Ba2+. However, the ΔCPutCAX1 transformant was able to grow in the presence of 20 mM Ba2+ while the PutCAX1 transformant could not. On the other hand, expression of the N-terminally truncated form and the N- and C-terminally truncated form failed to suppress the Ca2+ or Ba2+ sensitivity of yeast. These results suggest that PutCAX1 can complement the active Ca2+ transporters at some level and confer yeast Ba2+ tolerance, and that the N- and C-terminal regions of PutCAX1 play important roles in increasing the Ca2+ or Ba2+ tolerance of yeast.  相似文献   

6.
Membrane potential changes accompanying Ca2+ influx stimulated by release of Ca2+ from intracellular stores (store-regulated Ca2+ uptake) were monitored in BAPTA-loaded rat thymic lymphocytes using the fluorescent indicator bis(1,3-diethylthiobarbituric acid)trimethine oxonol. Depletion of [Ca2+] i stores by the application of thapsigargin, ionomycin or cyclopiazonic acid induced a depolarization which was (i) dependent upon BAPTA-loading, (ii) dependent upon extracellular Ca2+, (iii) independent of extracellular Na+ and (iv) abolished by 5 mm extracellular Ni2+. This depolarization was followed by a charybdotoxin-sensitive repolarization and subsequent hyperpolarization to values approximating the K+ equilibrium potential, consistent with secondary activation of a K+ conductance. These membrane potential changes temporally correlated with Ca2+ influx from the extracellular medium as measured fluorimetrically with indo-1. The divalent cation permeability sequence was investigated by monitoring the magnitude of the depolarization observed following the addition of 4 mm Ca2+, Mn2+, Ba2+ or Sr2+ to cells pretreated with doses of thapsigargin or ionomycin known to activate the store-regulated calcium uptake pathway. On the basis of these experiments, we conclude that the store-regulated Ca2+ uptake pathway has the following permeability sequence: Ca2+ > Mn2+ Ba2+, Sr2+ with Mn2+ displaying significant permeability relative to Ca2+. This pathway is distinguishable from other divalent cation uptake pathways reported in other cells types on the basis of its activation by thapsigargin and its high Mn2+ permeability.This work is supported by grants from the American Heart Association, Louisiana Affiliate (LA-92-6-28), Louisiana Education Quality Support Fund (LEQSF(1993-96)-RD-A-31) and Tulane University Graduate Program in Molecular and Cellular Biology.  相似文献   

7.
Tubulointerstitial nephritis is a cardinal renal manifestation of leptospirosis. LipL32, a major lipoprotein and a virulence factor, locates on the outer membrane of the pathogen Leptospira. It evades immune response by recognizing and adhering to extracellular matrix components of the host cell. The crystal structure of Ca2+-bound LipL32 was determined at 2.3 Å resolution. LipL32 has a novel polyD sequence of seven aspartates that forms a continuous acidic surface patch for Ca2+ binding. A significant conformational change was observed for the Ca2+-bound form of LipL32. Calcium binding to LipL32 was determined by isothermal titration calorimetry. The binding of fibronectin to LipL32 was observed by Stains-all CD and enzyme-linked immunosorbent assay experiments. The interaction between LipL32 and fibronectin might be associated with Ca2+ binding. Based on the crystal structure of Ca2+-bound LipL32 and the Stains-all results, fibronectin probably binds near the polyD region on LipL32. Ca2+ binding to LipL32 might be important for Leptospira to interact with the extracellular matrix of the host cell.  相似文献   

8.
9.
Summary Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment.45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(K m (Ca2+)=0.4 m) and ATP(K m (ATP)=3.9 m), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl or NO 3 . Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanidem-chlorophenylhydrazone (CCCP) and VO 4 3– which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves.  相似文献   

10.
Bacillus subtilis glutamine synthetase (GS) was highly expressed (about 86% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-glnA, which was induced by 0.4 mM IPTG in LB medium, and maximal theanine-forming activity of the recombinant GS induced in LB is 6.4 U/mg at a series concentration (0–100 mM) of Mn2+ at optimal pH 7.5. In order to get GS with high theanine-forming activity, safety, and low cost for food and pharmaceutics industry, M9-A (details are described in “Materials and methods”) and 0.1% (w/v) lactose were selected as culture medium and inducer respectively. Recombinant GS was also highly expressed (84% of total protein) and totally soluble in M9-A and the specific activity of the recombinant GS is 6.2 U/mg which is approximate to that (6.4 U/mg) induced in LB in the presence of 10 mM Mn2+ at optimal pH 7.5. The activity is markedly higher activated by Mn2+ than that by other nine bivalent cations. Furthermore, M9-B (5 μM Mn2+ was added into M9-A) was used to culture the recombinant strain and theanine-forming activity of the recombinant GS induced in M9-B was improved 20% (up to 7.6 U/mg). Finally, theanine production experiment coupled with yeast fermentation system was carried out in a 1.0 ml reaction system with 0.1 mg crude GS from M9-B or M9-A, and the yield of theanine were 15.3 and 13.1 g/L by paper chromatography and HPLC, respectively.  相似文献   

11.
Ca2+,Mg2+- and Ca2+,Mn2+-dependent and acid DNases were isolated from spermatozoa of the sea urchin Strongylocentrotus intermedius. The enzymes have been purified by successive chromatography on DEAE-cellulose, phenyl-Sepharose, Source 15Q, and by gel filtration, and the principal physicochemical and enzymatic properties of the purified enzymes were determined. Ca2+,Mg2+-dependent DNase (Ca,Mg-DNase) is a nuclear protein with molecular mass of 63 kD as the native form and its activity optimum is at pH 7.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mg2+) > Mn2+ = (Ca2+ + Mn2+) > (Mg2+ + EGTA) > Ca2+. Ca,Mg-DNase retains its maximal activity in sea water and is not inhibited by G-actin and N-ethylmaleimide, whereas Zn2+ inhibits the enzyme. The endogenous Ca,Mg-DNase is responsible for the internucleosomal cleavage of chromosomal DNA of spermatozoa. Ca2+,Mn2+-dependent DNase (Ca,Mn-DNase) has molecular mass of 25 kD as the native form and the activity optimum at pH 8.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mn2+) > (Ca2+ + Mg2+) > Mn2+ > (Mg2+ + EGTA). In seawater the enzyme is inactive. Zinc ions inhibit Ca,Mn-DNase. Acid DNase of spermatozoa (A-DNase) is not a nuclear protein, it has molecular mass of 37 kD as a native form and the activity optimum at pH 5.5, it is not activated by bivalent metal ions, and it is inhibited by N-ethylmaleimide and iodoacetic acid. Mechanisms of the endonuclease cleavage of double-stranded DNA have been established for the three enzymes. The possible involvement of DNases from sea urchin spermatozoa in programmed cell death is discussed.  相似文献   

12.
(Ca2+ + Mg2+)-ATPase activator protein associated with human erythrocyte membranes could be extracted with EDTA under isotonic condition at pH 7.6. No activator was released, however, using isotonic buffer alone. Like calmodulin, the activator in the EDTA extract migrated as a fast moving band on polyacrylamide gel electrophoresis. It was also heat-stable, was capable of stimulating active calcium transport and could stimulate (Ca2+ + Mg2+)-ATPase to the same extent. When chromatographed on a Sephacryl S-200 column, it was eluted in the same position as calmodulin and a membrane associated (Ca2+ + Mg2+)-ATPase activator prepared according to Mauldin and Roufogalis (Mauldin, D. and Roufogalis, B.D. (1980) Biochem. J. 187, 507–513). Furthermore, both Mauldin and Roufogalis protein and the activator in the EDTA extract exhibited calcium-dependent binding to a fluphenazine-Sepharose affinity column. On the basis of these data, it is concluded that the activator protein released from erythrocyte membranes by EDTA is calmodulin. A further pool of the ATPase activator could be released by boiling but not by Triton X-100 treatment of the EDTA-extracted membranes. This pool amounted to 8.9% of the EDTA-extractable pool.  相似文献   

13.
Divalent cation (Mn2+, Ca2+) entry into rat parotid acinar cells is stimulated by the release of Ca2+ from the internal agonist-sensitive Ca2+ pool via a mechanism which is not yet defined. This study examines the effect of temperature on Mn2+ influx into internal Ca2+ pool-depleted acini (depl-acini, as a result of carbachol stimulation of acini in a Ca2+-free medium for 10 min) and passive 45Ca2+ influx in basolateral membrane vesicles (BLMV). Mn2+ entry into deplacini was decreased when the incubation temperature was lowered from 37 to 4°C. At 4°C, Mn2+ entry appeared to be inactivated since it was not increased by raising extracellular [Mn2+] from 50 m up to 1 mm. The Arrhenius plot of depletion-activated Mn2+ entry between 37 and 8°C was nonlinear, with a change in the slope at about 21°C. The activation energy (Ea) increased from 10 kcal/mol (Q10=1.7) at 21–37°C to 25 kcal/mol (Q10=3.0) at 21-8°C. Under the same conditions, Mn2+ entry into basal (unstimulated) cells and ionomycin (5 m) permeabilized depl-acini exhibit a linear decrease, with E a of 7.8 kcal/mol (Q10=1.5) and 6.2 kcal/mol (Q10 < 1.5), respectively. These data suggest that depletion-activated Mn2+ entry into parotid acini is regulated by a mechanism which is strongly temperature dependent and distinct from Mn2+ entry into unstimulated acini.As in intact acini, Ca2+ influx into BLMV was decreased (by 40%) when the temperature of the reaction medium was lowered from 37 to 4°C. Kinetic analysis of the initial rates of Ca2+ influx in BLMV at 37°C demonstrated the presence of two Ca2+ influx components: a saturable component, with K Ca =279 ± 43 m, Vmax = 3.38 ± 0.4 nmol Ca2+/mg protein/min, and an apparently unsaturable component. At 4°C, there was no significant change in the affinity of the saturable component, but Vmax decreased by 61% to 1.3 ± 0.4 nmol Ca2+/mg protein/min. There was no detectable change in the unsaturable component. When BLMV were treated with DCCD (5 mm) or trypsin (1100, enzyme to membrane) for 30 min at 37°C there was a 40% decrease in Ca2+ influx. When BLMV were treated with DCCD or trypsin at 4°C and subsequently assayed for Ca2+ uptake at 37°C there was no significant loss of Ca2+ influx. These data suggest that the temperature sensitive high affinity Ca2+ flux component in BLMV is mediated by a protein which undergoes a modification at low temperatures, resulting in decreased Ca2+ transport.We thank Dr. Bruce Baum, Dr. Yukiharu Hiramatsu, Dr. Ofer Eidelman, and our other colleagues for their support during this work.  相似文献   

14.
This study examines the activation of divalent cation entry into rat parotid gland acinar cells by using Mn2+ as a Ca2+ surrogate cation. Following muscarinic-cholinergic stimulation of dispersed parotid acini with carbachol (10 microM), the onset of internal Ca2+ release (cytosolic [Ca2+], [Ca2+]i, increase) and the stimulation of Mn2+ entry (increase in fura2 quenching) are not simultaneously detected. [Ca2+]i elevation, due to intracellular release, is detected almost immediately following carbachol addition and peak [Ca2+]i increase occurs at 6.0 +/- 0.8 sec. However, there is an interval (apparent lag) between carbachol addition and the detection of stimulated Mn2+ entry. This apparent lag is decreased from 26 +/- 3.1 sec to 9.2 +/- 1.5 sec when external Mn2+ ([Mn2+]0) is increased from 12.5 to 500 microM. It is not decreased further with increase in [Mn2+]0 from 500 microM to 1 mM (9.8 +/- 2.1 sec), although both intracellular free Mn2+ and [Mn2+-fura2]/[fura2] increase. Thus, at [Mn2+]0 < 500 microM, the observed lag time is partially due to a limitation in the magnitude of Mn2+ entry. Furthermore, neither peak [Ca2+]i nor the time required to reach peak [Ca2+]i is significantly altered by [Mn2+]0 (12.5 microM to 1 mM). At every [Mn2+]0 tested (i.e., 12.5 microM-1 mM), the apparent lag is significantly greater than the time required to reach peak [Ca2+]i. However, when carbachol stimulation of the [Ca2+]i increase is attenuated by loading the acini with the Ca2+ chelator, 2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA), there is no detectable lag in carbachol stimulation of Mn2+ entry (with 1 mM [Mn2+]0). Importantly, in BAPTA-loaded acini, carbachol stimulates Mn2+ entry via depletion of the internal Ca2+ pool and not via direct activation of other divalent cation entry mechanisms. Based on these results, we suggest that the apparent lag in the detection of carbachol stimulation of Mn2+ entry into parotid acinar cells is due to a retardation of Mn2+ entry by the initial increase in [Ca2+]i, due to internal release, which most likely occurs proximate to the site of divalent cation entry.  相似文献   

15.
喜钙和嫌钙植物对外源Ca2+的生长生理响应   总被引:1,自引:0,他引:1  
以喜钙植物伞花木和嫌钙植物大白杜鹃为实验材料,以Hoagland营养液并设置其Ca2+浓度分别为0、5、10、25、50mmol/L培养试验,比较不同浓度外源Ca2+对其生长、叶绿素含量、渗透调节和矿质元素积累的影响,探索喜钙植物生长的适应特征,为喀斯特地区喜钙植物嗜钙机制研究提供基础资料。结果显示:(1)随着外源Ca2+浓度的增加,伞花木植株高度、茎粗以及叶干重、叶长、叶宽和叶形指数均得到不同程度提高,叶绿素和可溶性蛋白质含量增加,脯氨酸和可溶性糖含量无显著变化;而嫌钙植物大白杜鹃的生长却受到抑制,叶绿素和蛋白质含量降低,脯氨酸和可溶性糖含量增加;当Ca2+浓度为50mmol/L时,伞花木叶绿素和蛋白质含量分别为2.99mg/g和17.10mg/g,大白杜鹃叶绿素和蛋白质含量分别为1.39mg/g和14.30mg/g。(2)在实验设置的钙范围内,Ca2+可促进伞花木对P、N吸收并稳定体内Ca、K动态;而低浓度的Ca2+(<10mmol/L)促进大白杜鹃对Ca累积,抑制N、P吸收。  相似文献   

16.
The calmodulin-stimulated ATPase of maize (Zea mays L.) coleoptiles has been purified by calcium-dependent binding to a calmodulin affinity column. In the presence of protease inhibitors (phenylmethylsulfonylfluoride and chymostatin) a polypeptide of relative molecular mass (Mr) 140000 (±10000) is obtained on sodium-dodecylsulphate polyacrylamide gels. This polypeptide is recognised specifically by an affinity-purified polyclonal antibody to mammalian calmodulin-stimulated calcium-pumping ATPases and is of similar Mr to the erythrocyte-membrane calcium pump (138000 Mr).Abbreviations EGTA ethylene glycol-bis(-aminoethylether)-N,N,N,N-tetraacetic acid - Mr apparent molecular mass - SDS sodium dodecyl sulphate  相似文献   

17.
This review focusses on two questions: (1) How can the intracellular toxicity of ions such as Ca2+ or Zn2+ be reconciled with their extracellular benefit? (2) Why is the dietary requirement for Zn2+ so high when its documented biological role is that of a tightly-bound prosthetic group of certain enzymes? An answer to both questions is provided by the observation that extracellular cations such as Ca2+ and Zn2+ protect the plasma membrane of cells against non-specific leakage, including an influx of Ca2+ or Zn2+. It is suggested that such protection, against leakage induced by microbial and other toxins, may contribute to the high dietary requirement for zinc. These arguments lead to the proposal that a previously unrecognized form of host defence is one of protection of the cell plasma membrane by divalent cations against damage induced by cytotoxic agents of environmental origin.  相似文献   

18.
The Ca2+/Mg2+ ATPase of the rat heart sarcolemmal particles was solublized with Triton X-100 after treating the membranes with trypsin and purified by high speed centrifugation, ammonium sulfate fractionation, hydrophobic chromatography and gel filtration. The purified enzyme was seen as a single protein band in nondenaturing polyacrylamide gel electrophoresis and its molecular weight by gel filtration was found to be about 240000. The enzyme utilized Ca-ATP or Mg-ATP as a substrate with high affinity sites (Km = 0.12 – 0.16 mM) and low affinity sites (Km = 1 mM). The enzyme also utilized CTP, GTP, ITP, UTP and ADP as substrates but at a lower rate in comparison to ATP. The enzyme was activated by Ca2+ (Ka = 0.4 mM) and Mg2+ (Ka = 0.2 mM) as well as by other cations in the order Ca2– > Mg2+ > Mn2+ > Sr2+ > Ba2+ > Ni2+ > Cu2+. The ATPase activity in the presence of Ca2+ was markedly inhibited by Mg2+, Mn2+, Ni2+ and Cu2+ whereas the monovalent cations such as Na+ and K+ were without effect. The enzyme did not exhibit Ca2+ stimulated Mg2+ dependent ATPase activity and was insensitive to calmodulin, ouabain, verapamil, D-600, oligomycin, azide and vanadate. Optimum pH for Ca2+ or Mg2+ ATPase activity was 8.5 – 9.0. In view of the possible ectoenzyme nature of the ATPase, its role in adenine nucleotide and Ca2+ metabolism in the myocardium is discussed.  相似文献   

19.
Ca2+ levels in plants are controlled in part by H+/Ca2+ exchangers. Structure/function analysis of the Arabidopsis H+/cation exchanger, CAX1, revealed that a nine amino acid region (87–95) is involved in CAX1-mediated Ca2+ specificity. CAX3 is 77% identical (93% similar) to CAX1, and when expressed in yeast, localizes to the vacuole but does not suppress yeast mutants defective in vacuolar Ca2+ transport. Transgenic tobacco plants expressing CAX3 containing the 9 amino acid Ca2+ domain (Cad) from CAX1 (CAX3-9) displayed altered stress sensitivities similar to CAX1-expressing plants, whereas CAX3-9-expressing plants did not have any altered stress sensitivities. A single leucine-to-isoleucine change at position 87 (CAX3-I) within the Cad of CAX3 allows this protein to weakly transport Ca2+ in yeast (less than 10% of CAX1). Site-directed mutagenesis of the leucine in the CAX3 Cad demonstrated that no amino acid change tested could confer more activity than CAX3-I. Transport studies in yeast demonstrated that the first three amino acids of the CAX1 Cad could confer twice the Ca2+ transport capability compared to CAX3-I. The entire Cad of CAX3 (87–95) inserted into CAX1 abolishes CAX1-mediated Ca2+ transport. However, single, double, or triple amino acid replacements within the native CAX1 Cad did not block CAX1 mediated Ca2+ transport. Together these findings suggest that other domains within CAX1 and CAX3 influence Ca2+ transport. This study has implications for the ability to engineer CAX-mediated transport in plants by manipulating Cad residues.  相似文献   

20.
Distribution maps of free water in germinating maize shoots were measured by an NMR microscope, and localization of water was assigned by superimposing1H-NMR micro-images on opital micrographs. In order to know physiological difference among tissues of the shoot, Mn2+, a strong paramagnetic reagent was applied on imaging. Change of the images affected by Mn2+ suggested that cell activity was higher in the first leaf than the other parts of the shoot of a 3 days old seedling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号