首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsai MH  Jiang MJ 《Life sciences》2005,76(8):877-888
Smooth muscle contractility is regulated by both intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ sensitivity of the contractile apparatus. Extracellular signal-regulated kinases1/2 (ERK1/2) have been implicated in modulating Ca2+ sensitivity of smooth muscle contraction but mechanisms of action remain elusive. This study investigated the roles of ERK1/2 in modulating [Ca2+]i, calcium sensitivity and the 20-kDa myosin light chain (MLC20) phosphorylation during contraction activated by alpha1-adrenoceptor agonist phenylephrine and thromboxane A2 mimetic U46619 in rat tail artery strips. A specific inhibitor for ERK1/2 activation, U0126, inhibited phenylephrine- and U46619-induced contraction, shifting both concentration-response curves rightward. During phenylephrine-stimulated contraction, U0126 exhibited concentration-dependent inhibition towards force but significant decreases in [Ca2+]i were detected only at higher concentration. Both phenylephrine and U46619 induced a transient activation of ERK1/2 which was abolished by U0126 but unaffected by a general tyrosine kinase inhibitor genistein or Rho kinase inhibitor Y27632 at concentrations inhibiting more than 50% force. Interestingly, U0126 had no effect on steady-state MLC20 phosphorylation levels stimulated by both receptor agonists. These results indicated that during contraction of rat tail artery smooth muscle activated by alpha1-adrenoceptor agonist or thromboxane A2 analogue, ERK1/2 increase Ca2+ sensitivity that does not involve the modulation of MLC20 phosphorylation.  相似文献   

2.
ACh-induced contraction of esophageal circular muscle (ESO) depends on Ca2+ influx and activation of protein kinase Cepsilon (PKCepsilon). PKCepsilon, however, is known to be Ca2+ independent. To determine where Ca2+ is needed in this PKCepsilon-mediated contractile pathway, we examined successive steps in Ca2+-induced contraction of ESO muscle cells permeabilized by saponin. Ca2+ (0.2-1.0 microM) produced a concentration-dependent contraction that was antagonized by antibodies against PKCepsilon (but not by PKCbetaII or PKCgamma antibodies), by a calmodulin inhibitor, by MLCK inhibitors, or by GDPbetas. Addition of 1 microM Ca2+ to permeable cells caused myosin light chain (MLC) phosphorylation, which was inhibited by the PKC inhibitor chelerythrine, by D609 [phosphatidylcholine-specific phospholipase C inhibitor], and by propranolol (phosphatidic acid phosphohydrolase inhibitor). Ca2+-induced contraction and diacylglycerol (DAG) production were reduced by D609 and by propranolol, alone or in combination. In addition, contraction was reduced by AACOCF(3) (cytosolic phospholipase A(2) inhibitor). These data suggest that Ca2+ may directly activate phospholipases, producing DAG and arachidonic acid (AA), and PKCepsilon, which may indirectly cause phosphorylation of MLC. In addition, direct G protein activation by GTPgammaS augmented Ca2+-induced contraction and caused dose-dependent production of DAG, which was antagonized by D609 and propranolol. We conclude that agonist (ACh)-induced contraction may be mediated by activation of phospholipase through two distinct mechanisms (increased intracellular Ca2+ and G protein activation), producing DAG and AA, and activating PKCepsilon-dependent mechanisms to cause contraction.  相似文献   

3.
The purpose of the present study was to investigate the role and type of Ca2+ channels involved in the stimulatory effects of endothelin-1 (ET-1) on the Ca2+-dependent functional responses, p42/p44 MAP kinase phosphorylation, 20-kDa myosin light chain (MLC) phosphorylation and contraction, in rabbit iris sphincter, a nonvascular smooth muscle. ET-1 induced inositol phosphates production, MAP kinase phosphorylation, MLC phosphorylation (MLC20-P plus MLC20-2P) and contraction in a concentration-dependent manner with EC50 values of 71, 8, 6 and 25 nM, respectively. ET-1-induced MAP kinase phosphorylation, MLC phosphorylation and contraction were not significantly affected by nifedipine (1-60 microM), an L-type Ca2+ channel blocker, or by LOE 908 (1-100 microM), a blocker of Ca2+-permeable nonselective cation channels. However, SKF96365, a receptor-operated Ca2+ channel (ROCC) blocker, inhibited MAP kinase phosphorylation, MLC phosphorylation and contraction in a concentration-dependent manner with IC50 values of 28, 30 and 42 microM, respectively. 2-APB, a store-operated Ca2+ channel (SOCC) blocker, inhibited ET-1-induced MLC phosphorylation and contraction in a concentration-dependent manner with IC50 values of 12.7 and 19 microM, respectively, but was without effect on MAP kinase phosphorylation. The combined effects of submaximal concentrations of SKF96365 and 2-APB on ET-1-induced MLC phosphorylation and contraction were not additive, implying that their inhibitory actions could be mediated through a common Ca2+ entry channel. PD98059, a MAP kinase inhibitor, had no effect on ET-1-induced MLC phosphorylation and contraction, suggesting that these ET-1 effects in the rabbit iris muscle are MAP kinase-independent. In conclusion, the present study demonstrated for the first time that in rabbit iris sphincter (a) ET-1, through the ETA receptor, stimulates MAP kinase phosphorylation, MLC phosphorylation and contraction in a concentration-dependent manner, (b) that these Ca2+-dependent functional responses are not significantly affected by nifedipine or LOE908, and (c) that ET-1-induced MLC phosphorylation and contraction are inhibited by SKF96365 and 2-APB, suggesting that these effects are mainly due to store- and/or receptor Ca2+ entry.  相似文献   

4.
In alpha-toxin-permeabilized guinea-pig ileum smooth muscle, a step increase in Ca2+ caused a rapid rise in force and myosin light chain (LC20) phosphorylation, followed by their spontaneous decline to a low steady level even though Ca2+ remained constant. Carbachol resensitized the muscles to Ca2+, causing an increase in both the steady state force and LC20 phosphorylation at constant Ca2+. In beta-escin permeabilized preparations, calmodulin and okadaic acid converted the phasic responses to Ca2+ to more tonic ones. We conclude that Ca2(+)-sensitivity of force is modulated through changes in LC20 kinase/phosphatase activity ratio by Ca2+ itself (desensitization) and by agonists (sensitization).  相似文献   

5.
The contractile sensitivity of smooth muscle to changes in myoplasmic [Ca2+] is dependent on the form of stimulation. Both myosin phosphorylation and force are less sensitive to increases in [Ca2+]i derived from Ca2+ entry through L-type Ca2+ channels than to increases in [Ca2+] induced by agents which release internal Ca2+ stores. We hypothesized that activation of receptor-operated channels should produce a [Ca2+]i sensitivity similar to that induced by opening L channels. Aequorin-estimated myoplasmic [Ca2+] and myosin light chain phosphorylation were measured in swine carotid media tissues stimulated with ATP, an activator of the only known receptor-operated cation channel in smooth muscle. ATP, via activation of a P2x purinergic receptor, induced large, transient increases in [Ca2+]i, yet only small transient elevations in phosphorylation or force. Rapid desensitization to ATP was partially, but not completely, caused by hydrolysis of ATP into adenosine since 1) alpha-beta-methylene ATP (a poorly hydrolyzable analog of ATP) produced larger, yet still transient increases in [Ca2+]i, phosphorylation, and force; 2) BW A1433U, a P1 (adenosine) receptor antagonist, enhanced ATP-induced contractions; and 3) ATP, but not alpha-beta-methylene ATP increased bath [adenosine]. The [Ca2+]i sensitivity of phosphorylation during P2x receptor activation was similar to that observed with KCl-depolarization-induced opening of L channels, supporting the hypothesis that transplasmalemmal Ca2+ influx produces less phosphorylation and force than mobilization of intracellular Ca2+ stores. Cumulative additions of higher alpha-beta-methylene ATP concentrations induced repeated transient contractions, indicative of an unusual form of receptor desensitization which could be explained if the affinity of the P2x receptor for ATP, but not the receptor number were rapidly reduced.  相似文献   

6.
The Ca2+ sensitivities of tonic (pulmonary and femoral artery) and phasic (portal vein and ileum) smooth muscles and the effects of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) and norepinephrine on Ca2+ sensitivity of force development and myosin light chain (MLC20) phosphorylation were determined in permeabilized preparations that retained coupled receptors and endogenous calmodulin. The Ca2+ sensitivity of force was higher (approximately 3-fold) in the tonic than in the phasic smooth muscles. The nucleotide specificity of Ca2+ sensitization was: GTP gamma S much greater than GTP greater than ITP much greater than CTP = UTP. Baseline phosphorylation (7% at pCa greater than 8) and maximal phosphorylation (58% at pCa 5.0) were both lower in portal vein than in femoral artery (20 and 97%). Norepinephrine and GTP gamma S increased phosphorylation at constant [Ca2+] (pCa 7.0-6.5). MLC20 phosphorylation induced by norepinephrine was completely inhibited by guanosine 5'-O-(beta-thiodiphosphate) (GDP beta S). In portal vein at pCa 5, GTP gamma S increased phosphorylation from 58%, the maximal Ca2(+)-activated value, to 75%, and at pCa greater than 8, from 7 to 13%. In femoral artery at pCa 5, neither phosphorylation (97%) nor force was affected by GTP gamma S, while at pCa greater than 8, GTP gamma S caused an increase in force (16% of maximum) with a borderline increase in MLC20 phosphorylation (from 20 to 27%). MLC20 phosphorylation (up to 100%) was positively correlated with force. The major results support the hypothesis that the G-protein coupled Ca2(+)-sensitizing effect of agonists on force development is secondary to increased MLC20 phosphorylation.  相似文献   

7.
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction.  相似文献   

8.
We investigated the mechanisms of dysmotility of the colonic circular muscle of the Crohn's disease rat model. Contractions induced by KCl, carbachol, and Bay K 8644 were decreased in circular smooth muscles isolated from 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat colon. However, the absolute force and Ca2+ sensitivity of contractile proteins were not affected as assessed in alpha-toxin permeabilized smooth muscle. The current density of the L-type Ca2+ channel in circular smooth muscle cells was significantly decreased in the TNBS-treated colonic cells. However, expressions of the L-type Ca2+ channel mRNA and protein did not differ between control and TNBS-treated preparations. Pretreatment with the NF-kappaB inhibitors pyrrolidinedithiocarbamate and sulfasalazine partially recovered the decreased contractility and current density of the L-type Ca2+ channel by TNBS treatment. These results suggest that the decrease in the contraction of circular smooth muscle isolated from TNBS-induced colitis rat colon, which may be related to gut dysmotility in Crohn's disease, is attributable to the decreased activity of the L-type Ca2+ channel. The dysfunction of the L-type Ca2+ channel may be mediated by NF-kappaB-dependent pathways.  相似文献   

9.
KCl causes smooth muscle contraction by elevating intracellular free Ca2+, whereas receptor stimulation activates an additional mechanism, termed Ca2+ sensitization, that can involve activation of RhoA-associated kinase (ROK) and PKC. However, recent studies support the hypothesis that KCl may also increase Ca2+ sensitivity. Our data showed that the PKC inhibitor GF-109203X did not, whereas the ROK inhibitor Y-27632 did, inhibit KCl-induced tonic (5 min) force and myosin light chain (MLC) phosphorylation in rabbit artery. Y-27632 also inhibited BAY K 8644- and ionomycin-induced MLC phosphorylation and force but did not inhibit KCl-induced Ca2+ entry or peak ( approximately 15 s) force. Moreover, KCl and BAY K 8644 nearly doubled the amount of ROK colocalized to caveolae at 30 s, a time that preceded inhibition of force by Y-27632. Colocalization was not inhibited by Y-27632 but was abolished by nifedipine and the calmodulin blocker trifluoperazine. These data support the hypothesis that KCl caused Ca2+ sensitization via ROK activation. We discuss a novel model for ROK activation involving translocation to caveolae that is dependent on Ca2+ entry and involves Ca2+-calmodulin activation.  相似文献   

10.
Lymphatic vessels comprise a multifunctional transport system that maintains fluid homeostasis, delivers lipids to the central circulation, and acts as a surveillance system for potentially harmful antigens, optimizing mucosal immunity and adaptive immune responses1. Lymph is formed from interstitial fluid that enters blind-ended initial lymphatics, and then is transported against a pressure gradient in larger collecting lymphatics. Each collecting lymphatic is made up of a series of segments called lymphangions, separated by bicuspid valves that prevent backflow. Each lymphangion possesses a contractile cycle that propels lymph against a pressure gradient toward the central circulation2. This phasic contractile pattern is analogous to the cardiac cycle, with systolic and diastolic phases, and with a lower contraction frequency4. In addition, lymphatic smooth muscle generates tone and displays myogenic constriction and dilation in response to increases and decreases in luminal pressure, respectively5. A hybrid of molecular mechanisms that support both the phasic and tonic contractility of lymphatics are thus proposed.Contraction of smooth muscle is generally regulated by the cytosolic Ca2+ concentration ([Ca2+]i) plus sensitivity to Ca2+, of the contractile elements in response to changes in the environment surrounding the cell6. [Ca2+]i is determined by the combination of the movement of Ca2+ through plasma membrane ligand or voltage gated Ca2+ channels and the release and uptake of Ca2+ from internal stores. Cytosolic Ca2+ binds to calmodulin and activates enzymes such as myosin light chain (MLC) kinase (MLCK), which in turn phosphorylates MLC leading to actin-myosin-mediated contraction8. However, the sensitivity of this pathway to Ca2+ can be regulated by the MLC phosphatase (MLCP)9. MLCP activity is regulated by Rho kinase (ROCK) and the myosin phosphatase inhibitor protein CPI-17.Here, we present a method to evaluate changes in [Ca2+]i over time in isolated, perfused lymphatics in order to study Ca2+-dependent and Ca2+-sensitizing mechanisms of lymphatic smooth muscle contraction. Using isolated rat mesenteric collecting lymphatics we studied stretch-induced changes in [Ca2+]i and contractile activity. The isolated lymphatic model offers the advantage that pressure, flow, and the chemical composition of the bath solution can be tightly controlled. [Ca2+]i was determined by loading lymphatics with the ratiometric, Ca2+-binding dye Fura-2. These studies will provide a new approach to the broader problem of studying the different molecular mechanisms that regulate phasic contractions versus tonic constriction in lymphatic smooth muscle.  相似文献   

11.
One purpose of the current study was to establish whether vasoconstriction occurs in all vessel types in response to H(2)O(2). Isometric force was measured in pulmonary venous and arterial rings, and isobaric contractions were measured in mesenteric arteries and veins in response to H(2)O(2). A second purpose was to determine whether H(2)O(2)-induced contraction is calcium independent. The addition of H(2)O(2) to calcium-depleted (using the Ca(2+) ionophore ionomycin in zero calcium EGTA buffer) muscle caused contraction. Furthermore, permeabilized muscle contracted in response to H(2)O(2) even in zero Ca(2+). The final purpose was to determine whether the 20-kDa regulatory myosin light chain (MLC(20)) phosphorylation plays a role in H(2)O(2)-induced contraction. Pulmonary arterial strips were freeze-clamped at various time points during H(2)O(2)-induced contractions, and the relative amounts of phosphorylated MLC(20) were measured. H(2)O(2) caused dose-dependent contractions that were independent of MLC(20) phosphorylation. ML-9, a myosin light chain kinase inhibitor, had no effect on the H(2)O(2) contractile response. In conclusion, H(2)O(2) induces Ca(2+)- and MLC(20) phosphorylation-independent contraction in pulmonary and systemic arterial and venous smooth muscle.  相似文献   

12.
In order to elucidate the role of tyrosine phosphorylation in vasoconstriction, we investigated the effects of inhibitors of tyrosine kinase (genistein, 30 microM) and phosphatase (sodium o-vanadate, 5 microM) on the contraction of aorta isolated from guinea pig. Genistein significantly inhibited norepinephrine-induced contraction, but it did not affect that induced by KCI. Thus, tyrosine phosphorylation may not be involved in the contractile response to KCI alone. The aortic contraction elicited by KCl was significantly augmented by sodium o-vanadate, which increased both the maximum force and pD2 values of KCl contraction. In the presence of verapamil, KCl-induced contraction was abolished even after pretreatment with sodium o-vanadate. Sodium o-vanadate also augmented Ca2+-induced contraction in the aortic strips depolarized with KCl, increasing both its maximum force and pD2 values. Neither basal 45Ca2+ uptake nor verapamil-sensitive 45Ca2+ uptake induced by KCl were affected by pretreatment with sodium o-vanadate. These results suggest that tyrosine phosphorylation is involved in the contraction of guinea-pig aorta not through transplasmalemmal Ca2+ entry but through increased Ca2+ sensitivity of the intracellular contractile pathway.  相似文献   

13.
Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca2+]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca2+]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.  相似文献   

14.
Impaired smooth muscle contractility is a hallmark of acute acalculous cholecystitis. Although free cytosolic Ca2+ ([Ca2+]i) is a critical step in smooth muscle contraction, possible alterations in Ca2+ homeostasis by cholecystitis have not been elucidated. Our aim was to elucidate changes in the Ca2+ signaling pathways induced by this gallbladder dysfunction. [Ca2+]i was determined by epifluorescence microscopy in fura 2-loaded isolated gallbladder smooth muscle cells, and isometric tension was recorded from gallbladder muscle strips. F-actin content was quantified by confocal microscopy. Ca2+ responses to the inositol trisphosphate (InsP3) mobilizing agonist CCK and to caffeine, an activator of the ryanodine receptors, were impaired in cholecystitic cells. This impairment was not the result of a decrease in the size of the releasable pool. Inflammation also inhibited Ca2+ influx through L-type Ca2+ channels and capacitative Ca2+ entry induced by depletion of intracellular Ca2+ pools. In addition, the pharmacological phenotype of these channels was altered in cholecystitic cells. Inflammation impaired contractility further than Ca2+ signal attenuation, which could be related to the decrease in F-actin that was detected in cholecystitic smooth muscle cells. These findings indicate that cholecystitis decreases both Ca2+ release and Ca2+ influx in gallbladder smooth muscle, but a loss in the sensitivity of the contractile machinery to Ca2+ may also be responsible for the impairment in gallbladder contractility.  相似文献   

15.
Mechanisms of Ca2+ sensitization of both myosin light chain (MLC) phosphorylation and force development by protein kinase C (PKC) were studied in permeabilized tonic smooth muscle obtained from the rabbit femoral artery. For comparison, the Ca2+ sensitizing effect of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) was examined, which had been previously shown to inhibit MLC phosphatase in phasic vascular smooth muscle. We now report that PKC activators (phorbol esters, short chain synthetic diacylglycerols and a diacylglycerol kinase inhibitor) and GTP gamma S significantly increase both MLC phosphorylation and force development at constant [Ca2+]. Major phosphorylation site occurring in the presence of phorbol-12,13- dibutyrate (PDBu) or GTP gamma S at constant [Ca2+] is the same serine residue (Ser-19) as that phosphorylated by MLC kinase in response to increased Ca2+ concentrations. In an ATP- and Ca(2+)-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4- diazepine (ML-9), to avoid the kinase activity, both PDBu and GTP gamma S significantly decreased the rate of MLC dephosphorylation to half its control value. However, PDBu inhibited the relaxation rate more than did GTP gamma S. In the presence of microcystin-LR to inhibit the phosphatase activity, neither PDBu nor GTP gamma S affected MLC phosphorylation and force development. These results indicate that PKC, like activation of GTP binding protein, increases Ca2+ sensitivity of both MLC phosphorylation and force production through inhibition of MLC phosphatase.  相似文献   

16.
铁对血管收缩活动的影响及其机制   总被引:4,自引:2,他引:2  
Kuang W  Chen YY  Shen YL  Xia Q 《生理学报》2003,55(3):273-277
动脉粥样硬化的发生和铁引起的氧化应激密切相关。铁对血管的直接效应及其对血管收缩功能的影响尚不明确。本文采用血管环灌流装置 ,观察铁对离体SD大鼠去内皮胸主动脉环的直接效应 ,及对去内皮主动脉环KCl和苯肾上腺素 (PE)引发的收缩效应的影响。结果显示 :( 1) 10 0 μmol/L枸橼酸铁 (FAC)引起大鼠血管环发生相位性收缩 ,最大收缩幅度可达KCl诱发的最大收缩的 2 4 0 2± 2 3 7%。当 [Ca2 +]o 增加 1倍时 ,铁所致的血管环收缩幅度明显增加 (P <0 0 1)。阻断L 型钙通道后 ,铁所致的血管环收缩幅度明显降低 (P <0 0 1)。在无钙液中 ,用佛波酯收缩血管环 ,待收缩稳定后给予FAC ,此时收缩幅度增加 49 18± 3 75 %。 ( 2 )铁孵育 3 0min后 ,KCl引起血管环收缩的幅度显著降低 (P <0 0 1)。铁孵育可使PE引起的收缩量 -效曲线右移 (P <0 0 5 )。 ( 3 )二甲基亚砜、过氧化氢酶和谷胱甘肽可明显降低铁对PE血管收缩反应的抑制作用 (P <0 0 5 )。从这些结果可得到以下结论 :铁可引起胸主动脉发生相位性收缩 ,其机制可能与L 型钙通道短暂开放导致钙离子内流 ,及平滑肌对钙的敏感性增加有关 ;较长时间与铁孵育后 ,可对血管收缩功能产生损伤 ,氧自由基的生成增加和细胞内GSH的水平降低可能参与铁对收缩功能的  相似文献   

17.
M Iino  T Yamazawa  Y Miyashita  M Endo    H Kasai 《The EMBO journal》1993,12(13):5287-5291
Neurotransmitters induce contractions of smooth muscle cells initially by mobilizing Ca2+ from intracellular Ca2+ stores through inositol 1,4,5-trisphosphate (InsP3) receptors. Here we studied roles of the molecules involved in Ca2+ mobilization in single smooth muscle cells. A slow rise in cytoplasmic Ca2+ ([Ca2+]i) in agonist-stimulated smooth muscle cells was followed by a wave of rapid regenerative Ca2+ release as the local [Ca2+]i reached a critical concentration of approximately 160 nM. Neither feedback regulation of phospholipase C nor caffeine-sensitive Ca(2+)-induced Ca2+ release was found to be required in the regenerative Ca2+ release. These results indicate that Ca(2+)-dependent feedback control of InsP3-induced Ca2+ release plays a dominant role in the generation of the regenerative Ca2+ release. The resulting Ca2+ release in a whole cell was an all-or-none event, i.e. constant peak [Ca2+]i was attained with agonist concentrations above the threshold value. This finding suggests a possible digital mode involved in the neural control of smooth muscle contraction.  相似文献   

18.
Tianeptine is a novel anti-depressant with an efficacy equivalent to that of classical anti-depressants. Additional beneficial effects include neuroprotection, anti-stress and anti-ulcer properties whose molecular mechanisms are still not completely understood but may involve changes in the anti-oxidant defence system. Herein, we have studied the effects of tianeptine on both contractile activity of isolated rat uteri and components of the endogenous anti-oxidative defence system. Tianeptine-induced dose-dependent inhibition of both spontaneous and Ca2+-induced contraction of uterine smooth muscle. The effect was more pronounced in the latter. Tianeptine treatment increased glutathione peroxidase (GSH-Px) and catalase (CAT) activities in spontaneous and Ca2+-stimulated uteri. A significant decrease in glutathione-reductase (GR) activity in both spontaneous and Ca2+-induced uterine contractions after tianeptine treatment indicated a reduction in reduced glutathione and consequently a shift toward a more oxidised state in the treated uteri. In spontaneously contracting uteri, tianeptine caused a decrease in copper-zinc SOD (CuZnSOD) activity. Tianeptine's anti-depressant effects may be accomplished by triggering a cascade of cellular adaptations including inhibition of smooth muscle contractility and an adequate anti-oxidative protection response.  相似文献   

19.
Recent studies have highlighted the role of the sarcoplasmic reticulum (SR) in controlling excitability, Ca2+ signalling and contractility in smooth muscle. Caffeine, an agonist of ryanodine receptors (RyRs) on the SR has been previously shown to effect Ca2+ signalling but its effects on excitability and contractility are not so clear. We have studied the effects of low concentration of caffeine (1 mM) on Ca2+ signalling, action potential and contractility of guinea pig ureteric smooth muscle. Caffeine produced reversible inhibition of the action potentials, Ca2+ transients and phasic contractions evoked by electrical stimulation. It had no effect on the inward Ca2+ current or Ca2+ transient but increased the amplitude and the frequency of spontaneous transient outward currents (STOCs) in voltage clamped ureteric myocytes, suggesting Ca2+-activated K+ channels (BK) are affected by it. In isolated cells and cells in situ caffeine produced an increase in the frequency and the amplitude of Ca2+ sparks as well the number of spark discharging sites per cell. Inhibition of Ca2+ sparks by ryanodine (50 microM) or SR Ca2+-ATPase (SERCA) cyclopiazonic acid (CPA, 20 microM) or BKCa channels by iberiotoxin (200 nM) or TEA (1 mM), fully reversed the inhibitory effect of caffeine on Ca2+ transients and force evoked by electrical field stimulation (EFS). These data suggest that the inhibitory effect of caffeine on the action potential, Ca2+ transients and force in ureteric smooth muscle is caused by activation of Ca2+ sparks/STOCs coupling mechanism.  相似文献   

20.
The adaptation of contractile mechanisms of the uterine artery to pregnancy is not fully understood. The present study examined the effect of pregnancy on the uterine artery baseline Ca2+ sensitivity. In beta-escin-permeabilized arterial preparations, Ca2+ -induced concentration-dependent contractions were significantly decreased in uterine arteries from pregnant animals compared with those of nonpregnant animals. Time-course studies showed that Ca2+ increased phosphorylation of 20-kDa myosin light chain (MLC20), which preceded the tension development in vessels from both pregnant and nonpregnant animals. When compared with vessels from nonpregnant animals, there was a significant increase in the protein level of MLC20 and an accordance increase in the level of Ca2+ -induced phosphorylated MLC20 (MLC20-P) in uterine arteries during pregnancy. Simultaneous measurements of MCL20-P levels and contractions stimulated with Ca2+ in the same tissues demonstrated a significant attenuation in the tension-to-MLC20-P ratio in uterine arteries during pregnancy. Activation of PKC with phorbol 12,13-dibutyrate (PDBu) potentiated Ca2+ -induced contractions in uterine arteries from nonpregnant but not pregnant animals. Accordingly, inhibition of PKC attenuated Ca2+ -induced contractions in uterine arteries from nonpregnant but not pregnant animals. PDBu produced contractions in the presence or absence of Ca2+ in the beta-escin-permeabilized arteries, which were significantly decreased in uterine arteries from pregnant compared with nonpregnant animals. The results suggest that pregnancy upregulates the thick-filament regulatory pathway by increasing MLC20 phosphorylation but downregulates the thin-filament regulatory pathway by decreasing the contractile sensitivity of MLC20-P, resulting in attenuated baseline Ca2+ sensitivity in the uterine artery. In addition, PKC plays an important role in the regulation of basal Ca2+ sensitivity, which is downregulated during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号