首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and properties of oligodeoxynucleotides (ODNs) containing 2'- O -(trifluoromethyl)adenosine (2) are described. 2'- O -(Trifluoromethyl)adenosine (2) or N 6-(benzoyl)-2'- O -(trifluoromethyl)adenosine (6) was obtained in 22 or 32% yield by treating 2'- O -[(methylthio)thiocarbonyl]-3',5'- O -(1,1,3, 3-tetraisopropyldisiloxane-1,3-diyl)(TIPDS)adenosine (4) or N 6, N 6-(dibenzoyl)-2'- O -[(methylthio)thiocarbonyl]-3',5'- O -(TIPDS)-adenosine (5), respectively, with pyridinium poly-(hydrogen fluoride) in the presence of 1,3-dibromo-5,5-dimethylhydantoin. Nucleoside 2 was incorporated into DNA hexadecamers. ODNs that contained 2 reduced the thermal stability of duplexes with their complementary DNAs but increased the thermal stability of duplexes with their complementary RNAs. Furthermore, ODNs containing 2 were slightly more resistant to snake venom phosphodiesterase than an unmodified ODN.  相似文献   

2.
The 5'-terminal region of U1 snRNA is highly complementary to the consensus exon-intron regions of hnRNA and it has been suggested that U1 snRNP might play a role in the splicing of the pre-mRNA by intermolecular base-pairing between these regions. Here the secondary structure of the 5' terminus of U1 RNA in the isolated native U1 snRNP particle has been investigated by site-directed enzymatic cleavage of the RNA. Individual oligodeoxynucleotides complementary to various sequences within the first 15 nucleotides of the 5' terminus of U1 RNA have been tested for their ability to form stable DNA X RNA hybrids, with subsequent cleavage of the U1 RNA by RNase H. Our results show unequivocally that the 9 nucleotides at the 5' terminus which are complementary to a consensus 5' splice site are indeed single-stranded in the intact U1 snRNP particle, and are not protected by snRNP proteins. However, they also indicate that the U1 sequence complementary to an intron's consensus 3' end is not readily available for intermolecular base-pairing, either in the intact U1 snRNP particle or in the deproteinized U1 RNA molecule. Therefore our data favour the possibility that U1 snRNP plays a role only in the recognition of a 5' splice site of hnRNA, rather than being involved in the alignment of both ends of an intron for splicing.  相似文献   

3.
4.
The 2'-5' RNA ligase family members are bacterial and archaeal RNA ligases that ligate 5' and 3' half-tRNA molecules with 2',3'-cyclic phosphate and 5'-hydroxyl termini, respectively, to the product containing the 2'-5' phosphodiester linkage. Here, the crystal structure of the 2'-5' RNA ligase protein from an extreme thermophile, Thermus thermophilus HB8, was solved at 2.5A resolution. The structure of the 2'-5' RNA ligase superimposes well on that of the Arabidopsis thaliana cyclic phosphodiesterase (CPDase), which hydrolyzes ADP-ribose 1",2"-cyclic phosphate (a product of the tRNA splicing reaction) to the monoester ADP-ribose 1"-phosphate. Although the sequence identity between the two proteins is remarkably low (9.3%), the 2'-5' RNA ligase and CPDase structures have two HX(T/S)X motifs in their corresponding positions. The HX(T/S)X motifs play important roles in the CPDase activity, and are conserved in both the CPDases and 2'-5' RNA ligases. Therefore, the catalytic mechanism of the 2'-5' RNA ligase may be similar to that of the CPDase. On the other hand, the electrostatic potential of the cavity of the 2'-5' RNA ligase is positive, but that of the CPDase is negative. Furthermore, in the CPDase, two loops with low B-factors cover the cavity. In contrast, in the 2'-5' RNA ligase, the corresponding loops form an open conformation and are flexible. These characteristics may be due to the differences in the substrates, tRNA and ADP-ribose 1",2"-cyclic phosphate.  相似文献   

5.
Essential Role of Cyclization Sequences in Flavivirus RNA Replication   总被引:13,自引:0,他引:13       下载免费PDF全文
A possible role in RNA replication for interactions between conserved complementary (cyclization) sequences in the 5'- and 3'-terminal regions of Flavivirus RNA was previously suggested but never tested in vivo. Using the M-fold program for RNA secondary-structure predictions, we examined for the first time the base-pairing interactions between the covalently linked 5' genomic region (first ~160 nucleotides) and the 3' untranslated region (last ~115 nucleotides) for a range of mosquito-borne Flavivirus species. Base-pairing occurred as predicted for the previously proposed conserved cyclization sequences. In order to obtain experimental evidence of the predicted interactions, the putative cyclization sequences (5' or 3') in the replicon RNA of the mosquito-borne Kunjin virus were mutated either separately, to destroy base-pairing, or simultaneously, to restore the complementarity. None of the RNAs with separate mutations in only the 5' or only the 3' cyclization sequences was able to replicate after transfection into BHK cells, while replicon RNA with simultaneous compensatory mutations in both cyclization sequences was replication competent. This was detected by immunofluorescence for expression of the major nonstructural protein NS3 and by Northern blot analysis for amplification and accumulation of replicon RNA. We then used the M-fold program to analyze RNA secondary structure of the covalently linked 5'- and 3'-terminal regions of three tick-borne virus species and identified a previously undescribed additional pair of conserved complementary sequences in locations similar to those of the mosquito-borne species. They base-paired with DeltaG values of approximately -20 kcal, equivalent or greater in stability than those calculated for the originally proposed cyclization sequences. The results show that the base-pairing between 5' and 3' complementary sequences, rather than the nucleotide sequence per se, is essential for the replication of mosquito-borne Kunjin virus RNA and that more than one pair of cyclization sequences might be involved in the replication of the tick-borne Flavivirus species.  相似文献   

6.
7.
Poly(2'-deoxyadenosine) and poly(thymidine) constructed of carbonate linkages were synthesized by polycondensation between silyl ether and carbonylimidazolide at the 3'- and 5'-positions of the 2'-deoxyribonucleoside monomers. The N-benzoyl-2'-deoxyadenosine monomer afforded the corresponding polycarbonate together with the cyclic oligomers. However, the deprotection of the N-benzoyl group resulted in the scission of the polymer main chain. Thus, the N-unprotected 2'-deoxyadenosine monomers were examined for polycondensation. However, there was involved the undesired reaction between the adenine amino group and the carbonylimidazolide to form the carbamate linkage. In order to exclude this unfavorable reaction, dynamic protection was employed. Strong hydrogen bonding was used in place of the usual covalent bonding for reducing the nucleophilicity of the adenine amino group. Herein, 3',5'-O-diacylthymidines that form the complementary hydrogen bonding with the adenine amino group were added to the polymerization system of the N-unprotected 2'-deoxyadenosine monomer. Consequently, although the oligomers (M(n) = 1000-1500) were produced, the contents of the carbamate group were greatly reduced. The dynamic protection reagents were easily and quantitatively recovered as the MeOH soluble parts from the polymerization mixtures. In the polycondensation of the thymidine monomer, there tended to be involved another unfavorable reaction of carbonate exchange, which consequently formed the irregular carbonate linkages at not only the 3'-5' but also the 3'-3' and 5'-5' positions. Employing the well-designed monomer suppressed the carbonate exchange reaction to produce poly(thymidine) with the almost regular 3'-5'carbonate linkages.  相似文献   

8.
9.
10.
Circularization of the HIV-1 RNA genome   总被引:2,自引:0,他引:2  
  相似文献   

11.
In "The ends of a large RNA molecule are necessarily close", Yoffe et al. (Nucleic Acids Res 39(1):292-299, 2011) used the programs RNAfold [resp. RNAsubopt] from Vienna RNA Package to calculate the distance between 5' and 3' ends of the minimum free energy secondary structure [resp. thermal equilibrium structures] of viral and random RNA sequences. Here, the 5'-3' distance is defined to be the length of the shortest path from 5' node to 3' node in the undirected graph, whose edge set consists of edges {i, i + 1} corresponding to covalent backbone bonds and of edges {i, j} corresponding to canonical base pairs. From repeated simulations and using a heuristic theoretical argument, Yoffe et al. conclude that the 5'-3' distance is less than a fixed constant, independent of RNA sequence length. In this paper, we provide a rigorous, mathematical framework to study the expected distance from 5' to 3' ends of an RNA sequence. We present recurrence relations that precisely define the expected distance from 5' to 3' ends of an RNA sequence, both for the Turner nearest neighbor energy model, as well as for a simple homopolymer model first defined by Stein and Waterman. We implement dynamic programming algorithms to compute (rather than approximate by repeated application of Vienna RNA Package) the expected distance between 5' and 3' ends of a given RNA sequence, with respect to the Turner energy model. Using methods of analytical combinatorics, that depend on complex analysis, we prove that the asymptotic expected 5'-3' distance of length n homopolymers is approximately equal to the constant 5.47211, while the asymptotic distance is 6.771096 if hairpins have a minimum of 3 unpaired bases and the probability that any two positions can form a base pair is 1/4. Finally, we analyze the 5'-3' distance for secondary structures from the STRAND database, and conclude that the 5'-3' distance is correlated with RNA sequence length.  相似文献   

12.
We have studied the binding of the octanucleotide (5'-3')d(AAGGAGGT) which is fully complementary to the 3' end of 16S ribosomal RNA, to ribosomes and to the isolated target sequence (5'-3') (ACCUCCUUA). The binding constant for 30S or 70S ribosomes is (5 +/- 2) X 10(7) mol-1, whereas the duplex containing the octa- and the nonanucleotide has an association constant of (6 +/- 3) X 10(7) mol-1. The two values are the same within the experimental error. This result suggests that basepairing at the 3' end of 16S rRNA is not stabilized by ribosomal proteins.  相似文献   

13.
Wang Y  Silverman SK 《Biochemistry》2005,44(8):3017-3023
Previous experiments have identified numerous RNA ligase deoxyribozymes, each of which can synthesize either 2',5'-branched RNA, linear 2'-5'-linked RNA, or linear 3'-5'-linked RNA. These products may be formed by reaction of a 2'-hydroxyl or 3'-hydroxyl of one RNA substrate with the 5'-triphosphate of a second RNA substrate. Here the inherent propensities for nucleophilic reactivity of specific hydroxyl groups were assessed using RNA substrates related to the natural sequences of spliceosome substrates and group II introns. With the spliceosome substrates, nearly half of the selected deoxyribozymes mediate a ligation reaction involving the natural branch-point adenosine as the nucleophile. In contrast, mostly linear RNA is obtained with the group II intron substrates. Because the two sets of substrates differ at only three nucleotides, we conclude that the location of the newly created ligation junction in DNA-catalyzed branch formation depends sensitively on the RNA substrate sequences. During the experiment that led primarily to branched RNA, we abruptly altered the selection strategy to demand that the deoxyribozymes create linear 3'-5' linkages by introducing an additional selection step involving the 3'-5'-selective 8-17 deoxyribozyme. Although no 3'-5' linkages (相似文献   

14.
Zn2+-dependent deoxyribozymes that form natural and unnatural RNA linkages   总被引:1,自引:0,他引:1  
We report Zn(2+)-dependent deoxyribozymes that ligate RNA. The DNA enzymes were identified by in vitro selection and ligate RNA with k(obs) up to 0.5 min(-)(1) at 1 mM Zn(2+) and 23 degrees C, pH 7.9, which is substantially faster than our previously reported Mg(2+)-dependent deoxyribozymes. Each new Zn(2+)-dependent deoxyribozyme mediates the reaction of a specific nucleophile on one RNA substrate with a 2',3'-cyclic phosphate on a second RNA substrate. Some of the Zn(2+)-dependent deoxyribozymes create native 3'-5' RNA linkages (with k(obs) up to 0.02 min(-)(1)), whereas all of our previous Mg(2+)-dependent deoxyribozymes that use a 2',3'-cyclic phosphate create non-native 2'-5' RNA linkages. On this basis, Zn(2+)-dependent deoxyribozymes have promise for synthesis of native 3'-5'-linked RNA using 2',3'-cyclic phosphate RNA substrates, although these particular Zn(2+)-dependent deoxyribozymes are likely not useful for this practical application. Some of the new Zn(2+)-dependent deoxyribozymes instead create non-native 2'-5' linkages, just like their Mg(2+) counterparts. Unexpectedly, other Zn(2+)-dependent deoxyribozymes synthesize one of three unnatural linkages that are formed upon the reaction of an RNA nucleophile other than a 5'-hydroxyl group. Two of these unnatural linkages are the 3'-2' and 2'-2' linear junctions created when the 2'-hydroxyl of the 5'-terminal guanosine of one RNA substrate attacks the 2',3'-cyclic phosphate of the second RNA substrate. The third unnatural linkage is a branched RNA that results from attack of a specific internal 2'-hydroxyl of one RNA substrate at the 2',3'-cyclic phosphate. When compared with the consistent creation of 2'-5' linkages by Mg(2+)-dependent ligation, formation of this variety of RNA ligation products by Zn(2+)-dependent deoxyribozymes highlights the versatility of transition metals such as Zn(2+) for mediating nucleic acid catalysis.  相似文献   

15.
HeLa cytoplasmic extracts contain both 3'-5' and 5'-3' exonuclease activities that may play important roles in mRNA decay. Using an in vitro RNA deadenylation/decay assay, mRNA decay intermediates were trapped using phosphothioate-modified RNAs. These data indicate that 3'-5' exonucleolytic decay is the major pathway of RNA degradation following deadenylation in HeLa cytoplasmic extracts. Immunodepletion using antibodies specific for the exosomal protein PM-Scl75 demonstrated that the human exosome complex is required for efficient 3'-5' exonucleolytic decay. Furthermore, 3'-5' exonucleolytic decay was stimulated dramatically by AU-rich instability elements (AREs), implicating a role for the exosome in the regulation of mRNA turnover. Finally, PM-Scl75 protein was found to interact specifically with AREs. These data suggest that the interaction between the exosome and AREs plays a key role in regulating the efficiency of ARE-containing mRNA turnover.  相似文献   

16.
R Kierzek  L He    D H Turner 《Nucleic acids research》1992,20(7):1685-1690
Oligoribonucleotides with 2'-5' linkages have been synthesized on solid support. UV melting and CD experiments indicate complementary strands associate to give complexes with melting temperatures 30 to 40 degrees C lower than for duplexes formed by 3'-5' oligoribonucleotides with the same sequence. UV melting and imino proton NMR spectra and NOEs for (2'-5') CGGCGCCG are consistent with formation of an antiparallel duplex. The results suggest greater duplex stability was one factor favoring 3'-5' over 2'-5' linkages in evolution.  相似文献   

17.
C Goffin  V Bailly    W G Verly 《Nucleic acids research》1987,15(21):8755-8771
Using synthetic oligodeoxynucleotides with 3'-OH ends and 32P-labelled 5'-phosphate ends and the technique of polyacrylamide gel electrophoresis, it is shown that, in the presence of the complementary polynucleotide, an AP (apurinic or apyrimidinic) site at the 3' or the 5' end of the labelled oligodeoxynucleotides does not prevent their ligation by T4 DNA ligase, although the reaction rate is decreased. This decrease is more severe when the AP site is at the 3' end; the activated intermediates accumulate showing that it is the efficiency of the adenyl-5'-phosphate attack by the 3'-OH of the base-free deoxyribose which is mostly perturbed. Using the same technique, it is shown that a mispaired base at the 3' or 5' end of oligodeoxynucleotides does not prevent their ligation. A one-nucleotide gap, limited by 3'-OH and 5'-phosphate, can also be closed by T4 DNA ligase although with difficulty; here again the activation of the 5'-phosphate end does not seem to be slowed down, but rather the 3'-OH attack of the adenyl-5'-phosphate. All these anomalous ligations take place with the nick or the gap in front of a continuous complementary strand. Blunt ends ligation of correct duplexes occurs readily; however an AP site or a mispaired base at the 3' or 5' end of one strand of the duplexes prevents ligation between these strands. But a missing nucleotide (responsible for one unpaired nucleotide protruding at the 3' or 5' end of the complementary strand) does not stop ligation of the shorter oligodeoxynucleotides between independent duplexes.  相似文献   

18.
Histone RNA 3' processing in vitro produces one or more 5' cleavage products corresponding to the mature histone mRNA 3' end, and a group of 3' cleavage products whose 5' ends are mostly located several nucleotides downstream of the mRNA 3' end. The formation of these 3' products is coupled to the formation of 5' products and dependent on the U7 snRNP and a heat-labile processing factor. These short 3' products therefore are a true and general feature of the processing reaction. Identical 3' products are also formed from a model RNA containing all spacer nucleotides downstream of the mature mRNA 3' end, but no sequences from the mature mRNA. Again, this reaction is dependent on both the U7 snRNP and a heat-labile factor. Unlike the processing with a full-length histone pre-mRNA, this reaction produces only 3' but no 5' fragments. In addition, product formation is inhibited by addition of cap structures at the model RNA 5' end, indicating that product formation occurs by 5'-3' exonucleolytic degradation. This degradation of a model 3' product by a 5'-3' exonuclease suggests a mechanism for the release of the U7 snRNP after processing by shortening the cut-off histone spacer sequences base paired to U7 RNA.  相似文献   

19.
A major factor in removing RNA primers during the processing of Okazaki fragments is DNA polymerase I (Pol I). Pol I is thought to remove the RNA primers and to fill the resulting gaps simultaneously. RNase H, encoded by rnh genes, is another factor in removing the RNA primers, and there is disagreement with respect to the essentiality of both the polA and rnh genes. In a previous study, we looked for the synthetic lethality of paralogs in Bacillus subtilis and detected several essential doublet paralogs, including the polA ypcP pair. YpcP consists of only the 5'-3' exonuclease domain. In the current study, we first confirmed that the polA genes of both Escherichia coli and B. subtilis could be completely deleted. We found that the 5'-3' exonuclease activity encoded by either polA or ypcP xni was required for the growth of B. subtilis and E. coli. Also, the 5'-3' exonuclease activity of Pol I was indispensable in the cyanobacterium Synechococcus elongatus. These results suggest that a 5'-3' exonuclease activity is essential in these organisms. Our success in constructing a B. subtilis strain that lacked all RNase H genes indicates that the enzymatic activity is dispensable, at least in the wild type. Increasing the 5'-3' exonuclease activity partially compensated for a defective phenotype of an RNase H-deficient mutant, suggesting cooperative functions for the two enzyme systems. Our search for the distribution of the 5'-3' exonuclease domain among 250 bacterial genomes resulted in the finding that all eubacteria, but not archaea, possess this domain.  相似文献   

20.
(2')3',5'-Bisphosphate nucleotidase   总被引:2,自引:0,他引:2  
(2')3',5'-Bisphosphate nucleotidase has been prepared in electrophoretically homogeneous form from guinea pig liver. The enzyme catalyzes the hydrolysis of the 2'- or 3'-phosphate from the appropriate nucleoside 2',5'- and 3',5'-bisphosphates and is active with 3'-phosphoadenosine 5'-phosphosulfate and with coenzyme A but not with ATP. The 40,000-dalton protein is a monomer that requires Mg2+ for activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号