首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Passerines that overwinter in temperate climates undergo seasonal acclimatization that is characterized by metabolic adjustments that may include increased basal metabolic rate (BMR) and cold-induced summit metabolism (M(sum)) in winter relative to summer. Metabolic changes must be supported by equivalent changes in oxygen transport. While much is known about the morphology of the avian respiratory system, little is known about respiratory function under extreme cold stress. We examined seasonal variation in BMR, M(sum), and ventilation in seasonally acclimatized house sparrows from Wisconsin. BMR and M(sum) increased significantly in winter compared with summer. In winter, BMR increased 64%, and M(sum) increased 29% over summer values. The 64% increase in winter BMR is the highest recorded for birds. Metabolic expansibility (M(sum)/BMR) was 9.0 in summer and 6.9 in winter birds. The metabolic expansibility of 9.0 in summer is the highest yet recorded for birds. Ventilatory accommodation under helox cold stress was due to changes in breathing frequency (f), tidal volume, and oxygen extraction efficiency in both seasons. However, the only significant difference between summer and winter ventilation measures in helox cold stress was f. Mean f in helox cold stress for winter birds was 1.23 times summer values.  相似文献   

2.
LPL is an enzyme involved in the breakdown and uptake of lipoprotein triglycerides. In the present study, we examined how the transgenic (Tg) overexpression of human LPL in mouse skeletal muscle affected tolerance to cold temperatures, cold-induced thermogenesis, and fuel utilization during this response. Tg mice and their nontransgenic controls were placed in an environmental chamber and housed in metabolic chambers that monitored oxygen consumption and carbon dioxide production with calorimetry. When exposed to 4 degrees C, an attenuation in the decline in body temperature in Tg mice was accompanied by an increased metabolic rate (15%; P < 0.001) and a reduction in respiratory quotient (P < 0.05). Activity levels, the expression of uncoupling proteins in brown fat and muscle, and lean mass failed to explain the enhanced cold tolerance and thermogenesis in Tg mice. The more oxidative type IIa fibers were favored over the more glycolytic type IIb fibers (P < 0.001) in the gastrocnemius and quadriceps muscles of Tg mice. These data suggest that Tg overexpression of LPL in skeletal muscle increases cold tolerance by enhancing the capacity for fat oxidation, producing an avian-like phenotype in which skeletal muscle contributes significantly to the thermogenic response to cold temperatures.  相似文献   

3.
To preserve thermoneutrality, cold exposure is followed by changes in energy expenditure and basal metabolic rate (BMR). Because nitric oxide (NO) modulates mitochondrial O(2) uptake and energy levels, we analyzed cold effects (30 days at 4 degrees C) on rat liver and skeletal muscle mitochondrial NO synthases (mtNOS) and their putative impact on BMR. Cold exposure delimited two periods: A (days 1-10), with high systemic O(2) uptake and weight loss, and B (days 10-30), with lower O(2) uptake and fat deposition. mtNOS activity and expression decreased in period A and then increased in period B by 60-100% in liver and skeletal muscle (P < 0.05). Conversely, mitochondrial O(2) uptake remained initially high in the presence of l-arginine and later fell by 30-50% (P < 0.05). On this basis, the estimated fractional contribution of liver plus muscle to total BMR varied from 40% in period A to 25% in period B. The transitional modulation of mtNOS in rat cold acclimation could participate in adaptive responses that favor calorigenesis or conservative energy-saving mechanisms.  相似文献   

4.
Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments.  相似文献   

5.
由于金冠戴菊冬季的分布地与红玉冠戴菊相比更偏北,生活的环境更加寒冷,人们认为金冠戴菊对寒冷的耐受力更强。然而,有关红玉冠戴菊和金冠戴菊两者之间对寒冷的耐受性和最大产热能力的直接证据尚无报道。在美国南达科他秋季鸟类迁徙季节,作者采用冷暴露氦氧混合气体(79%氦和21%氧),对红玉冠戴菊和金冠戴菊的寒冷耐受能力和最大代谢率(最大冷诱导代谢,Msux)进行了测定。结果显示:金冠戴菊对低温的耐受能力高于红玉冠戴菊,由于金冠戴菊和红玉冠戴菊的体重和热传导差异不显著,表明对低温的耐受能力的差异不是体重和热传导引起的;而金冠戴菊的最大代谢产热(2.51ml±0.32mlO2min-1,n=11)明显高于雄性(2.27ml±0.25mlO2min-1,n=13)和雌性(2.05ml±0.18mlO2min-1,n=13)的红玉冠戴菊,表明最大代谢的差异可能导致对寒冷的耐受能力不同。相对于红玉冠戴菊,金冠戴菊有良好的耐寒冷能力,与其在冬季分布更北相一致,并与其高的代谢产热能力有关,此模式和许多雀形目鸟类在季节性驯化中增加对寒冷的耐受能力相一致。  相似文献   

6.
Helox (79% helium and 21% oxygen) has often been used for thermobiological studies, primarily because helium is thought to be metabolically inert and to produce no adverse effects other than increasing heat loss. However, these assumptions have been questioned. As basal metabolic rate (BMR) represents maintenance energy requirements for vital body functions, potential physiological effects of helox should be reflected in changes of BMR. In this study, sugar gliders were subjected to both air and helox atmospheres over a wide range of T(a)'s, including the thermoneutral zone (TNZ), to determine (1) whether helox has any influence other than on heat loss and (2) the maximum heat production (HP(max)) and thermal limits of this species. Although thermal conductance in the TNZ increased in helox, BMR was similar in air and helox (0.55+/-0.07 and 0.57+/-0.06 mL g(-1) h(-1), respectively). The TNZ in helox, however, was shifted upwards by about 3 degrees C. Below the TNZ, sugar gliders were able to withstand an effective temperature of -24.7+/-7.3 degrees C with an HP(max) of 3.14+/-0.36 mL g(-1) h(-1). The low effective temperature tolerated by sugar gliders shows that they are competent thermoregulators despite their apparent lack of functional brown fat. Similarities of BMRs in air and helox suggest that the effect of helox is restricted to an increase of heat loss, and, consequently, helox represents a useful tool for thermal physiologists. Moreover, the lack of increase of BMR in helox despite an increase in thermal conductance of sugar gliders suggests that BMR is not a function of body surface.  相似文献   

7.
Thyroxine (T4) is required in species possessing brown adipose tissue (BAT) for the maintenance of cold tolerance and adaptation. In humans, who possess negligible quantities of BAT, the importance of T4 has not been demonstrated. We studied the effects of decreased serum T4 and thyrotropin (TSH) on human cold habituation after repeated cold air exposures. Eight men (T3+) received a single daily dose of triiodothyronine (T3; 30 micrograms/day), and another eight men (T3-) received a placebo. All 16 normal thyroid men underwent a standardized cold air test (SCAT) under basal conditions in January and again in March after eighty 30-min 4.4 degrees C air exposures (10/wk). Measurements of basal metabolic rate (BMR), O2 consumption (VO2), mean arterial pressure (MAP), plasma norepinephrine (NE), serum TSH, free and total T4, and free and total T3 were repeated before and after 8 wk of exposure. TSH, free T4, and total T4 were 50% lower for T3+ than for T3- subjects. Total and free T3 were not different between groups. BMR was unchanged after habituation, whereas the cold-stimulated VO2, MAP, and NE were significantly reduced for all subjects in March. The relationship between VO2 and NE (r2 = 0.44, P less than 0.001) during the initial SCAT was unchanged with habituation. We suggest that human cold habituation is independent of major changes in circulating T4 and TSH.  相似文献   

8.
长爪沙鼠的代谢率与器官的关系   总被引:17,自引:0,他引:17  
宋志刚  王德华 《动物学报》2002,48(4):445-451
我们测定了野生长爪沙鼠(Meriones unguiculatus)的基础代谢率和冷诱导的最大代谢率,分析了动物体内11种器官或组织的大小与代谢率的关系。长爪沙鼠的基础代谢率为118.10mlO2/h,最大代谢率为659.83mlO2/h。经过残差分析表明,基础代谢率并不与任何一种器官或组织相关,而最大代谢率与小肠湿重(n=20,r=-0.478,P=0.033)和消化道全长(n=20,r=-0.487,P=0.030)显著相关,表明体内器官重量的差别并不是造成种内基础代谢率差别的原因;体内存在着与最大代谢率相关的“代谢机器”,消化系统(特别是小肠)是这一代谢机器的重要组成部分,但代谢机器的大小并不能通过基础代谢率反映出来。基础代谢率与最大代谢率不相关,因此不支持“较高的基础代谢率能够产生较高的非基础代谢率(最大代谢率等)”的假设。  相似文献   

9.
Metabolic rate is a key aspect of organismal biology and the identification of selective factors that have led to species differences is a major goal of evolutionary physiology. We tested whether environmental characteristics and/or diet were significant predictors of interspecific variation in rodent metabolic rates. Mass-specific basal metabolic rates (BMR) and maximum metabolic rates (MMR, measured during cold exposure in a He-O2 atmosphere) were compiled from the literature. Maximum (Tmax) and minimum (Tmin) annual mean temperatures, latitude, altitude, and precipitation were obtained from field stations close to the capture sites reported for each population (N = 57). Diet and all continuous-valued traits showed statistically significant phylogenetic signal, with the exception of mass-corrected MMR and altitude. Therefore, results of phylogenetic analyses are emphasized. Body mass was not correlated with absolute latitude, but was positively correlated with precipitation in analyses with phylogenetically independent contrasts. Conventional multiple regressions that included body mass indicated that Tmax (best), Tmin, latitude, and diet were significant additional predictors of BMR. However, phylogenetic analyses indicated that latitude was the only significant predictor of mass-adjusted BMR (positive partial regression coefficient, one-tailed P = 0.0465). Conventional analyses indicated that Tmax, Tmin (best), and altitude explained significant amounts of the variation in mass-adjusted MMR. With body mass and Tmin in the model, no additional variables were significant predictors. Phylogenetic contrasts yielded similar results. Both conventional and phylogenetic analyses indicated a highly significant positive correlation between residual BMR and MMR (as has also been reported for birds), which is consistent with a key assumption of the aerobic capacity model for the evolution of vertebrate energetics (assuming that MMR and exercise-induced maximal oxygen consumption are positively functionally related). Our results support the hypothesis that variation in environmental factors leads to variation in the selective regime for metabolic rates of rodents. However, the causes of a positive association between BMR and latitude remain obscure. Moreover, an important area for future research will be experiments in all taxa are raised under common conditions to allow definitive tests of climatic adaptation in endotherm metabolic rates and to elucidate the extent of adaptive phenotypic plasticity.  相似文献   

10.
People whose evolution has taken place in contrasting climates, appear to have an almost identical critical temperature (27–29°C). This does not exclude the existence of minor variations within and between populations with regard to individual fitness to resist cold exposure. The main factor by which Man's fitness to resist cold exposure can be varied, appears to be thermogenesis. The biological variation of BMR, shivering, a possible non-shivering thermogenesis, and the maximal aerobic power is reviewed. BMR of an individual can vary with diet, general health, habitual physical activity, as well as various environmental conditions, conceivably including cold exposure. A definite inter- and intra-individual variation in shivering threshold exists. The underlying mechanism of these differences is poorly understood, however. Firm evidence in favour of a non-shivering thermogenesis in Man is lacking. Man's capability to raise his metabolism in muscular exercise is an important part of his fitness to resist cold exposure. This capability can be assessed by measurement of maximal oxygen uptake. Maximal oxygen uptake is influenced by age, sex, health, diet and habitual physical activity. It is questionable if evolution in contrasting climates brings about variation in maximal oxygen uptake.  相似文献   

11.
The present paper reviews recent studies on changes in body mass, body composition and rates of energy expenditure during the breeding season in the black-legged Kittiwake (Rissa tridactyla) on Svalbard (79 degrees N). The main characteristic of the energy budget is a pronounced decrease in body mass as well as basal metabolic rate (BMR) after the eggs have hatched. While most internal organs lose mass in direct proportion to the general decrease in body mass, the liver and kidney masses decrease to a disproportionately greater extent. Since both the liver and the kidney have high intrinsic metabolic rates, these results support an earlier notion that the reduction in body mass is an adaptation to reduce maintenance costs. Alternatively, the reduced BMR is due to a decrease in energy uptake from the gastrointestinal tract, thereby ensuring that undigested food is ready to be regurgitated to the chicks. At the end of the chick-rearing period, the field metabolic rate (FMR) reaches its highest level, probably due to an increased workload associated with chick feeding. This occurs at a time of low body mass and BMR. A pronounced increase in the metabolic scope (FMR/BMR) during the latter part of the chick-rearing period demonstrates that BMR and FMR may change independently of each other and that the ratio FMR/BMR may not be a good measure of energy stress.  相似文献   

12.
1. Monodelphis domestica is a small marsupial mammal from South America. Its thermogenic abilities in the cold were determined when the opossums were both warm (WA) and cold (CA) acclimated. Maximum heat production of M. domestica was obtained at low temperatures in helium-oxygen. 2. Basal metabolic rate (BMR) in the WA animals was 3.2 W/kg and mean body temperature was 32.6 degrees C at 30 degrees C. These values were lower than those generally reported for marsupials. Nevertheless, these M. domestica showed considerable metabolic expansibility in response to cold. Sustained (summit) metabolism was 8-9 times BMR, while peak metabolism was 11-13 times BMR. These maximum values were equal to, or above, those expected in small placentals. 3. Cold acclimation altered the thermal responses of M. domestica, particularly in warm TaS. However, summit metabolism was not significantly increased; nor did M. domestica show a significant thermogenic response to noradrenaline, which in many small placentals elicits non-shivering thermogenesis. The thermoregulatory responses of this American marsupial were, in most aspects, similar to those of Australian marsupials. This suggests that the considerable thermoregulatory abilities of marsupials are of some antiquity.  相似文献   

13.
Although sound production requires energy, it has been unclear how much singing increases metabolic rate in passerine birds. We measured the rate of oxygen consumption of two breeds of canary that sang inside a respirometry chamber. Metabolic rate increased with the proportion of time that birds spent singing. Average metabolic rate during singing at 15-20°C was 1.05-1.07 times that of standing quietly in the same temperature range or 2.2-2.6 times basal metabolic rate (BMR). Whether an increase in metabolic rate during song of this order would represent a fitness cost to free-living passerine birds would depend upon the circumstances. Singing rather than perching during the day would raise metabolic rate only slightly. Singing at night or at dawn, instead of sleeping with a metabolic rate closer to BMR, would cause a greater increase in metabolism. Birdsong could act as a condition-dependent signal, since birds that are easily able to achieve energy balance could afford the cost of singing, but those close to their energy limits might not. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.   相似文献   

14.
Three developmental stages (pupae, early pharate and late pharate adults) of Callosobruchus subinnotatus (Pic.) were investigated for their tolerance or susceptibility to four modified atmospheres. Two of these atmospheres were hypercarbic and two were hypoxic. The hypercarbic atmospheres were found to cause mortality earlier than hypoxic atmospheres. Late pharate adults died earlier than pupae or early pharate adults. Late pharate adults that survived the exposure took a longer time to eclose than the pupae or early pharate adult.Using high resolution microrespirometric techniques, it was possible to record the oxygen consumption rate and CO(2) output of different developmental stages in air. The metabolic rate was determined manometrically as the oxygen uptake rate at an ambient temperature of 25 degrees C. The oxygen uptake rate differed significantly between groups of 20 individuals of different stages (p<0.01; t-test). The lowest rate of oxygen uptake (510.6+/-52.2 &mgr;l g(-1) h(-1)) was recorded in pupae. Higher oxygen uptake rates were found in early pharate adults (668.4+/-45.6 &mgr;l g(-1) h(-1)) and late pharate adults (1171.2+/-45.0 &mgr;l g(-1) h(-1)), and adult beetles (1310.4+/-53.4 &mgr;l g(-1) h(-1)). The patterns of CO(2) release were similar to those of oxygen uptake. CO(2) release was highest in eclosed adults and late pharate adults followed by early pharate adults, and lowest in pupae. The mode of CO(2) release ranged from continuous CO(2) release in pupae to discontinuous CO(2) release in late pharate and eclosed adults. Thus, high metabolic rates, and perhaps, in conjunction with discontinuous CO(2) of late pharate adults are responsible for their higher susceptibility to modified atmospheres than pupae and early pharate adults.  相似文献   

15.
Shorebirds have high resting and field metabolic rates relative to many other bird groups, and this is posited to be related to their high‐energy lifestyle. Maximum metabolic outputs for cold or exercise are also often high for bird groups with energetically demanding lifestyles. Moreover, shorebirds demonstrate flexible basal and maximal metabolic rates, which vary with changing energy demands throughout the annual cycle. Consequently, shorebirds might be expected to have high maximum metabolic rates, especially during migration periods. We captured least Calidris minutilla and pectoral C. melanotos sandpipers during spring and fall migration in southeastern South Dakota and measured maximal exercise metabolic rate (MMR; least sandpipers only), summit metabolic rate (Msum, maximal cold‐induced metabolic rate) and basal metabolic rate (BMR, minimum maintenance metabolic rate) with open‐circuit respirometry. BMR for both least and pectoral sandpipers exceeded allometric predictions by 3–14%, similar to other shorebirds, but Msum and MMR for both species were either similar to or lower than allometric predictions, suggesting that the elevated BMR in shorebirds does not extend to maximal metabolic capacities. Old World shorebirds show the highest BMR during the annual cycle on the Arctic breeding grounds. Similarly, least sandpiper BMR during migration was lower than on the Arctic breeding grounds, but this was not the case for pectoral sandpipers, so our data only partially support the idea of similar seasonal patterns of BMR variation in New World and Old World shorebirds. We found no correlations of BMR with either Msum or MMR for either raw or mass‐independent data, suggesting that basal and maximum aerobic metabolic rates are modulated independently in these species.  相似文献   

16.
Cold-adapted rats (unlike non-adapted animals) respond to an acute exposure to external cold by an overshoot increase in metabolic rate and a paradoxical increase in body core temperature. In contrast to external cooling, internal cooling with the aid of a chronically implanted intravenous heat exchanger elicited comparable increase in metabolic rate, coupled with a large fall in core temperature. It is concluded that cold adaptation alters peripheral thermosensitivity (enhances cold sensitivity), while the thermosensitivity of the core is not affected by the adaptation process.  相似文献   

17.
Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy.  相似文献   

18.
The thermoregulatory capacity and metabolic responses to light–dark cycles under various mild food-deprivation treatments were measured in Bronze Mannikins Spermestes cucullatus (10–11 g). We measured the response of minimum oxygen consumption to ambient temperature in order to determine the basal metabolic rate (BMR), thermal conductance and limits of thermoneutrality of the Mannikins. In addition, we measured oxygen consumption in response to light–dark cycles and three mild food-deprivation treatments. Bronze Mannikins have a low BMR (1.67 mlO2/g/h) that is c. 50–60% of that predicted from phylogenetically independent allometric curves for all birds. A low BMR resulted in amplitudes of metabolism between the active and rest phases that were double those predicted allometrically from body mass. The reduced nocturnal metabolic rate did not represent torpor. Typically, Mannikins would need to reduce their metabolic rate during the rest phase to c. 17% of BMR to attain the average torpor metabolic rate of other birds. The data are, however, consistent with those of other group-living Afrotropical birds that benefit energetically from group huddling in environments in which moderate seasonality is accompanied by unpredictable climates – and thus unpredictable energy inputs in time and space. When food-deprived and placed under moderate cold stress (20 °C), Mannikins decreased their rest-phase metabolic rates to the same magnitude as several small Holarctic birds. We suggest that, in the context of the progress made to quantify and define proximate heterothermic responses in endotherms, such as torpor and hibernation, the term nocturnal hypothermia often applied to moderate nocturnal reductions in metabolic rate is vague, misleading and inappropriate.  相似文献   

19.
Subterranean mammals show lower than-allometrically expected-basal metabolic rates (BMR), and several competing hypotheses were suggested to explain how physical microenvironmental conditions and underground life affect subterranean mammalian energetics. Two of these are the thermal-stress and the cost-of-burrowing hypotheses. The thermal-stress hypothesis posits that a lower mass-independent BMR reduces overheating in burrows where convective and evaporative heat loss is low, whereas the cost-of-burrowing hypothesis states that a lower mass-independent BMR may compensate for the extremely high energy expenditure of digging during foraging activity. In this paper we tested both hypotheses at an intraspecific level. We compared seven populations of the subterranean rodent Spalacopus cyanus or cururo from different geographic localities with contrasting habitat conditions. We measured BMR and digging metabolic rate (DMR) through open flow respirometry. Our results support neither the thermal-stress nor the cost-of-burrowing hypothesis. Cururos from habitats with contrasting climatic and soil conditions exhibited similar BMR and DMR when measured under similar semi-natural conditions. It is possible that S. cyanus originated in Andean locations where it adapted to relatively hard soils. Later, when populations moved into coastal areas characterized by softer soils, they may have retained the original adaptation without further phenotypic changes.  相似文献   

20.
People are exposed to heat regularly due to their jobs or daily habits in cold winter, but few studies have reported whether parallel heat and cold exposure and diminish cold acclimation. This study was conducted to investigate the effects of alternating exposure to cold and heat on cold tolerance in eight young males. A daily acclimation program to cold and heat, which consisted of 2-h sitting at 10 °C air in the morning and 2-h running and rest at 30 °C air in the afternoon, was conducted for 14 consecutive days. Eight male subjects participated in a cold tolerance test (10 °C [ ± 0.3], 40%RH[ ± 3]) before (PRE) and after (POST) completing the alternating exposure program. During the cold tolerance test, subjects remained sitting upright on a chair for 60 min. Rectal temperature (Tre) was lower in POST than in PRE during the 60-min cold tolerance test (P = 0.027). During the cold tolerance test, systolic, diastolic, and mean arterial blood pressures in POST were lower than those in PRE (P = 0.006, P = 0.005, and P = 0.004). No significant differences in skin temperatures between PRE and POST were found for the cold tolerance test. There were no significant differences in energy expenditure during cold exposure between PRE and POST. Subjects felt less cold in POST than in PRE (P = 0.013) whereas there was no significant difference in overall thermal comfort between PRE and POST. These results suggest that cold adaptation can still occur in the presence of heat stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号