首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In newborn pigs (4-6 days old), recordings of efferent whole hypoglossal and phrenic nerve discharges were obtained during hyperoxia (or normoxia) and during hypoxia, before and after bilateral vagotomy. With intact vagi, spontaneous hypoglossal inspiratory activity was not observed and was not elicited by either spontaneous changes of electroencephalogram (EEG) or hypoxic stimulation (15% O2 in N2). After bilateral vagotomy, some animals had episodes of spontaneous hypoglossal inspiratory activity; power spectral analysis of EEG demonstrated that this inspiratory activity appeared synchronously with shifts of major peaks in EEG spectra from the delta band (0.5-3.5 Hz) to the theta band (3.5-7.0 Hz). Hypoglossal inspiratory discharges were also elicited by hypoxic stimulation and usually had a decrementing discharge pattern; in some cases, this activity had an augmenting discharge pattern. Our results suggest that hypoglossal motoneurons are poorly modulated by central inspiratory drive, requiring additional facilitatory influences, i.e. corticobulbar, intra-bulbar, chemical drive, before such modulation is observed.  相似文献   

2.
The influence of sinusoidal 45-Hz magnetic fields on the brain functions of 20 volunteers was investigated in a double-blind study using spectral analysis of EEG and measurements of Omega potentials and reaction time (RT). The field strength was 1,000 A/m (1.26 mT) and the duration of exposure was 1 h. Ten volunteers were exposed to a continuous field and ten received an intermittent exposure (1 s on/1 s off). Each person received one real and one sham exposure. One half of the volunteers got the real exposure first and the sham treatment after at least 24 h. For the rest, the sequence was inverse. The measurements of EEG, omega potentials and RT were performed before and after each exposure. Several statistically significant changes were observed, most of them after intermittent exposure. In the EEG, an increase of alpha (7.6–13.9 Hz) activity and a decrease of delta (1.5–3.9 Hz) activity were observed. β waves (14.2–20 Hz) increased in the frontal derivations as did the total power in occipital derivations. The mean and peak frequencies of EEG increased mainly in the frontal derivations. No direct effects on RT were seen. Learning to perform the RT test (decrease of RT in repeated trials), however, seemed to be affected by the exposure. The persons who received real exposure first learned more slowly than those who got sham exposure first. Further experiments are necessary to confirm the findings and for understanding the mechanisms of the effects. © 1993 Wiley-Liss. Inc.  相似文献   

3.
EEG topography by a microcomputer system (ATAC-3700 Nihon-Kohden) was performed in the rabbit in order to investigate the mechanism of TRH action on the brain wave. Power spectral analysis was carried out using a fast Fourier transform algorithm. The square root of the power spectra was defined as the equivalent potential over each frequency band by Ueno & Matsuoka's method. Potential fields of EEG frequency band were printed out on the topographic maps. The potentials of the electrocortical delta and theta waves were high, while the potentials of the alpha, beta 1 and beta 2 waves were low. Stimulation of the nucleus ventralis anterior (VA) by 3 Hz and 8 Hz resulted in a decrease in these potentials, especially, those of the alpha, beta 1 and beta 2 waves. The potentials of the alpha and fast waves were increased following unilateral destruction of VA. In the rabbit, in which TRH 0.5 mg/kg had been administered beforehand, there was no decrease in the potential of each wave induced by stimulation of VA with frequencies of 3 Hz and 8 Hz. The findings suggest involvement of the diffuse thalamocortical projection system in the activation of EEG by TRH.  相似文献   

4.
We measured the volume change of the thoracic cavity (delta Vth) and the volumes displaced by the diaphragm (delta Vdi) and rib cage (delta Vrc) in six pentobarbital-anesthetized dogs lying supine. A high-speed X-ray scanner (dynamic spatial reconstructor) provided three-dimensional images of the thorax during spontaneous breathing and during mechanical ventilation with paralysis. Tidal volume (VT) was measured by integrating gas flow. Changes in thoracic liquid volume (delta Vliq, presumably caused by changes in thoracic blood volume) were calculated as delta Vth - VT. Absolute volume displaced by the rib cage was not significantly different during the two modes of ventilation. During spontaneous breathing, thoracic blood volume increased during inspiration; delta Vliq was 12.3 +/- 4.1% of delta Vth. During mechanical ventilation, delta Vliq was nearly zero. Configuration of the relaxed chest wall was similar during muscular relaxation induced by either pharmacological paralysis or hyperventilation. Expiratory muscle activity produced 50 +/- 11% of the delta Vth during spontaneous breathing. We conclude that at constant VT the volume displaced by the rib cage is remarkably similar during the transition from spontaneous breathing to mechanical ventilation, while both diaphragmatic volume displacement and changes in intrathoracic blood volume decrease by a similar amount.  相似文献   

5.
Postpartum EEG spectral and coherence characteristics were estimated in mothers with or without postpartum depressions. In mothers without affective disorders the power of oscillations in the delta, theta, and alpha 1 frequency bands was increased as compared to controls. Intrahemispheric EEG coherence between the left frontal and adjacent derivations in the delta and theta bands and interhemispheric coherence in the central areas was increased and decreased over the remaining cortical surface. These changes led to a significant decrease in EEG asymmetry. It is suggested that during normal postpartum the influence of the limbicodiencephalic and lower brainstem structures on the cortex is augmented and a certain kind of dominanta is formed. In mothers with postpartum depressions the EEG alpha-band power was lower than in the control and normal groups, coherence changes in the delta and theta bands diminished the EEG asymmetry. The insufficiency of limbicodiencephalic influence and impairment of adaptive brainstem reactions are suggested to be responsible for problems in the formation of maternal dominanta, which results in the development of postpartum depressions.  相似文献   

6.
The electrical activity of the left and right sensorimotor cortex and left and right dorsal hippocampus (CA3 fields) was recorded during "animal hypnosis" in rabbits. The "animal hypnosis" produced asymmetry in the spectral power of the hippocampal electrical activity due to an increase in the power of delta 1, delta 2, and theta 1 components in the left-hippocampus and decrease in the spectral power in the same ranges in the right-hippocampus. Hemispheric asymmetry in the electrical activity during the "animal hypnosis" was also expressed in the indices of coherence between the sensorimotor cortex and hippocampus. EEG coherence between the left sensorimotor cortex and left hippocampus in the delta 1, theta 1, and theta 2 ranges was higher than that between the right-side structures.  相似文献   

7.
Seizure forecasting has the potential to create new therapeutic strategies for epilepsy, such as providing patient warnings and delivering preemptive therapy. Progress on seizure forecasting, however, has been hindered by lack of sufficient data to rigorously evaluate the hypothesis that seizures are preceded by physiological changes, and are not simply random events. We investigated seizure forecasting in three dogs with naturally occurring focal epilepsy implanted with a device recording continuous intracranial EEG (iEEG). The iEEG spectral power in six frequency bands: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), low-gamma (30–70 Hz), and high-gamma (70–180 Hz), were used as features. Logistic regression classifiers were trained to discriminate labeled pre-ictal and inter-ictal data segments using combinations of the band spectral power features. Performance was assessed on separate test data sets via 10-fold cross-validation. A total of 125 spontaneous seizures were detected in continuous iEEG recordings spanning 6.5 to 15 months from 3 dogs. When considering all seizures, the seizure forecasting algorithm performed significantly better than a Poisson-model chance predictor constrained to have the same time in warning for all 3 dogs over a range of total warning times. Seizure clusters were observed in all 3 dogs, and when the effect of seizure clusters was decreased by considering the subset of seizures separated by at least 4 hours, the forecasting performance remained better than chance for a subset of algorithm parameters. These results demonstrate that seizures in canine epilepsy are not randomly occurring events, and highlight the feasibility of long-term seizure forecasting using iEEG monitoring.  相似文献   

8.
Exposure to chorioamnionitis is strongly associated with neurodevelopmental disability after premature birth; however, it remains unclear whether subclinical infection affects functional EEG maturation. Chronically instrumented 103-104-day-old (0.7 gestational age: term 147 days) fetal sheep in utero were randomized to receive either gram-negative LPS by continuous low-dose infusion (100 ng iv over 24 h, followed by 250 ng/24 h for 4 days; n = 6) or the same volume of normal saline (n = 9). Arterial plasma cortisol, ACTH, and IL-6 were measured. The delta (0-3.9 Hz), theta (4-7.9 Hz), alpha (8-12.9 Hz), and beta (13-22 Hz) components of the EEG were determined by power spectral analysis. Brains were taken after 10 days for histopathology. There were no changes in blood gases, cardiovascular variables, or EEG power during LPS infusion, but a transient rise in plasma cortisol and IL-6 (P < 0.05). LPS infusion was associated with loss of the maturational increase to higher frequency activity, with reduced alpha and beta power, and greater delta power than saline controls from 6 to 10 days (P < 0.05). Histologically, LPS was associated with increased numbers of microglia and TNF-α-positive cells in the periventricular white matter and frontoparietal cortex, increased caspase-3-positive cells in white matter, but no loss of CNPase-positive oligodendrocytes, Nurr-1 subplate cells, or gyral complexity. These data suggest that low-dose endotoxin exposure can impair EEG maturation in preterm fetal sheep in association with neural inflammation but without hemodynamic disturbances or cortical injury.  相似文献   

9.
In this study, we introduce the fast wavelet transform (WT) as a method for investigating the effects of morphine on the electroencephalogram (EEG), respiratory activity and blood pressure in fetal lambs. Morphine was infused intravenously at 25 mg/h. The EEG, respiratory activity and blood pressure signals were analyzed using WT. We performed wavelet decomposition for five sets of parameters D 2j where -1 < j 5. The five series WTs represent the detail signal bandwidths: 1, 16–32 Hz; 2, 8–16 Hz; 3, 4–8 Hz; 4, 2–4 Hz; 5, 1–2 Hz. Before injection of the high-dose morphine, power in the EEG was high in all six frequency bandwidths. The respiratory and blood pressure signals showed common frequency components with respect to time and were coincident with the low-voltage fast activity (LVFA) EEG signal. Respiratory activity was observed during only some of the LVFA periods, and was completely absent during high-voltage slow activity (HVSA) EEG. The respiratory signal showed dominant power in the fourth wavelet band, and less power in the third and fifth bands. The blood pressure signal was also characterized by dominant power in the fourth wavelet band. This power was significantly increased during periods of respiratory activity. There was a strong relationship between fetal EEG, blood pressure and breathing movements. However, the injection of high-dose morphine resulted in a disruption of the normal cyclic pattern between the two EEG states and a significant increase in power in the first wavelet band. In addition, the high-dose drug resulted in a significant increase in the power of respiratory signal in the fourth and fifth wavelet bands, while power was reduced in the third wavelet band. Breathing activity was also continuous after the drug. The high-dose morphine also caused a temporary power shift from the third wavelet band to the fourth wavelet band for the 30-min period after injection of drug. Finally, high-dose morphine completely destroyed the correlation between EEG, breathing and blood pressure signals.  相似文献   

10.
The resting EEGs of several brain structures (motor and visual cortex, caudate nucleus and intralaminar thalamic nuclei) were submitted to spectral and coherence computer analyses in two rat strains. Genetically predisposed to convulsive state KM rats were shown to differ from nonpredisposed Wistar rats in EEG spectral properties. KM rats EEG pattern was characterized by increase of low frequencies (1-2 Hz) power and decrease of faster activity (5-12 Hz) power in cortical spectrograms as well as by decrease of caudate nucleus EEG absolute power. The coherence value between cortical or subcortical structures at below 4 Hz was intensified in KM rats. Reinforcement of cortical auto-oscillating properties manifested by ECoG synchronization in cortical-thalamic resonance interaction as well as weakening of striatal inhibitory system may constitute neurophysiological mechanisms of enhanced convulsive readiness. The probable role of mediator imbalance in these mechanisms is discussed.  相似文献   

11.
Performance of cognitive tests and EEG spectral power were evaluated in 39 students aged from 19-21 years in two conditions: during common educational process and immediately before examination (stress condition). Before examination, the performance was better in subjects with low level of spectral density in the delta band (in the occipital, parietal, central and frontal cortical areas) and high level of the alpha-rhythm spectral density in all the cortical areas, A decrease in performance scores before examination was correlated with an increase in the delta activity (in the right frontal and temporal cortical areas) and rise of the anxiety level (tested by Spielberger).  相似文献   

12.
EEG spectral power was calculated in 39 students at the age of 19-21 years in two experimental conditions: during the common educational process and immediately before an examination (stress condition). During the education process, in subjects with high anxiety (tested by Spielberger) the relative spectral power of the delta activity was higher than in the other group in the occipital, parietal, central, and right frontal brain areas, whereas the power of the EEG alpha in these areas was lower. Before examination tests, in subjects with high activity the delta power bilaterally increased in the temporal areas, whereas in subjects with low anxiety there was a decrease in the alpha rhythm power, especially in the right frontal area. In stress condition, the relative power of the delta activity in both occipital and temporal, right parietal and central areas was higher in subjects with low anxiety, whereas their alpha power was lower in both frontal and in occipital, parietal, and temporal areas of the left hemisphere.  相似文献   

13.
A cognitive set to illusory perception of linear relationships was formed in 56 young healthy subjects. After 10 presentations of Müller-Lyer figures, 39 subjects formed the stable set. In 17 subjects the unstable set was formed. The spectral power of the EEG led from different cortical areas was studied at different stages of set formation. Analysis of variance showed that the factors "set stage" and "group" x "set stage" x "hemisphere" exert significant influence on the EEG spectral power in the delta range in the frontal area. In the subjects with stable set, the power of this spectral component increased at the stages of set formation and actualization and returned to its initial values during set extinction. The between-group difference was more expressed in the left hemisphere. In subjects, which formed the stable set, the power of the occipitotemporal alpha rhythm in the reference state was higher than in subjects with the unstable set. In the process of set formation, the dynamics of the alpha spectral component (8-10 Hz) was more expressed in the stable group: its power increased to a greater extent at the stages of set actualization and extinction. In both groups, there were no significant changes in the alpha2 power over the course of the experiment.  相似文献   

14.
With the aim to reveal features of the neocortical spatiotemporal organization of potentials characteristic of different genetically predetermined emotional levels, momentary values of EEG potentials were analyzed in inbred rats of MR and MNRA strains. A topogram was described by a basic parameter such as its general level (the mean of momentary values of potentials derived from 24 symmetrical electrodes bilaterally implanted into the brain cortex) and a similarity coefficient (correlation between the set of its momentary values and that of a standard topogram). The general level and similarity coefficient values were calculated for a series of successive topograms individually for the right and left hemisphere. Also, right- and left-side power spectra of these series were calculated. In rats of MR strain, significant (p < 0.05) peaks in the general level and similarity coefficient spectra were observed in the delta (2.0 Hz), teta (6.5 Hz) and alpha (9 Hz) frequency bands. In this strain, the general level power was higher at the right side, and the similarity coefficient power displayed the left-side dominance. In rats of MNRA strain, peaks in the delta(2.0 Hz) band coinsided in the general level and similarity coefficient spectra, whereas, independently, the general level spectra had peaks in the theta band (7.0 Hz), and similarity coefficient had peaks at frequencies 3.0, 4.5, and 6.0 Hz. The left-side general level spectral power was higher than the right-side general level spectral power in the delta and lower in the high-frequency theta bands. The similarity coefficient power displayed the left-side dominance for the peaks in the delta (2.0 Hz) and theta (3.0 Hz) bands, and it displayed the right-side dominance for the peaks in the theta (4.5 Hz) band. The specific features of the cortical spatiotemporal organization of potentials revealed in rats of MR and MNRA strains suggest different modes of functioning of at least two systems, reticulo-thalamo-corticaland hippocampo-cortical.  相似文献   

15.
蛙类在暗视条件下能辨别不同颜色,但颜色感知时大脑神经活动的动态神经机制尚不清楚.本文通过分析峨眉仙琴蛙(Nidirana daunchina)在蓝、绿、黄三种颜色光刺激下脑电信号δ、θ、a、β 4种节律的功率谱,研究脑电节律与颜色感知之间的关系,探索颜色感知的动态神经机制.首先采集不同颜色刺激下端脑、间脑和中脑的脑电信...  相似文献   

16.
H Stamidis  G A Young 《Peptides》1992,13(4):755-760
In the present study, the effects of beta-FNA on DPDPE-induced increases in morphine EEG and EEG power spectra were assessed. Adult female Sprague-Dawley rats were implanted with cortical EEG electrodes and permanent indwelling ICV and IV cannulae. Rats were administered ICV beta-FNA at 20 nmol or ICV sterile water. Then 18-24 h later, rats were administered ICV DPDPE at 2.5 nmol or ICV sterile water followed, 10 min later, by IV morphine at 3 mg/kg. Morphine-induced changes in EEG global (1-50 Hz) spectral parameters, the duration of morphine-induced high voltage EEG bursts, the period of EEG and behavioral excitation, and the latency to onset of slow-wave sleep were statistically analyzed using a one-way analysis of variance. beta-FNA pretreatment significantly decreased morphine-induced total spectral power seen in the DPDPE + morphine group. beta-FNA pretreatment also significantly decreased the duration of morphine-induced EEG bursts, the period of EEG and behavioral excitation, and the latency to onset of slow-wave sleep in the DPDPE + morphine group. These data, therefore, suggest that DPDPE may be increasing the effects of morphine on EEG through delta opioid receptors associated with the mu-delta opioid receptor complex.  相似文献   

17.
The relationship between the latencies and amplitudes of the N1 and P2 components of the visual evoked potential (VEP) and the psychophysiological state of the brain immediately preceding the time of the stimulus has been investigated in 7 male subjects. Power spectral measures in the delta, theta, alpha and beta bands of the 1 sec pre-stimulus EEG were used to assess the brain state, and low intensity flashes, delivered randomly between 2 and 6 whole seconds, were used as the stimuli. Trials were ranked separately according to the relative amounts of pre-stimulus power in each EEG band and were partitioned into groups by an equal pre-stimulus spectral power criterion. Averaged EPs were computed from these groups and multiple regression analysis was used to relate pre-stimulus spectral power values to EP features. Five of the 7 subjects displayed consistent increases in N1-P2 amplitude as a function of increasing pre-stimulus relative alpha power. The between-subjects effect of pre-stimulus EEG on N1 latency was small, but was moderate for P2 latency (both significant). Both N1 and P2 latency were found to decrease with increasing amounts of pre-stimulus relative delta and theta power.  相似文献   

18.
The development of the resonance EEG responses of the left and right occipital areas was studied in right-handed men during prolonged (12 or 120 s) rhythmic, photostimulation with the intensity of 0.7 J and frequencies of 6, 10, and 16 Hz. Analysis of the EEG fine spectral structure was applied to compare the accumulated baseline EEG spectra and EEG spectra during photostimulation, to observe the dynamics of the short-term spectra and to detect power changes in the EEG narrow spectral band sharply coincident with the stimulation frequency. The more pronounced EEG responses to photostimulation were observed in subjects with the initially low EEG baseline, α-rhythm. Two-minute flash trains produced a substantial increase in the EEG power within the stimulation frequency with superposed oscillatory processes with different periods. These fluctuations are considered a reflection of intricate interaction between the adaptive and resonance EEG responses to the presented intermittent stimulation. Under 12-s stimulation the resonance EEG responses are steadily recorded within the first 3 s of stimulation and immediately after the flash cessation EEG power at the stimulation frequency returns to the initial level. The resonance EEG responses were more pronounced in the right hemisphere than in the left one, especially, at the stimulation frequencies of 6 and 16 Hz. With increasing the stimulation frequency, the maximum of resonance EEG responses was reached earlier. Under the stimulation frequency of 6 Hz, the maximal response was recorded 9–12 s after the beginning of flashes, at the frequencies of 10 and 16 Hz, it was recorded within 3–6 and 3 s, respectively.  相似文献   

19.
The EEG was recorded in 19 standard derivations in 88 students in the following states: rest with the eyes open, memorization (learning) of bilingual verbal semantic pairs (Latin and Russian), and retrieval (check) of the learned information. In order to calculate the mean heart rate (HR) in each state, the electrocardiogram was recorded. The subjective difficulty of task performance was assessed. Statistical comparison of the spectral power estimates in these states for frequency bands θ (4–7 Hz), α1 (7–10 Hz), α2 (10–13 Hz), β1 (13–18 Hz), β2 (18–30 Hz), and γ (30–40 Hz) demonstrated a number of significant differences in the EEG absolute power (local synchronization) between the states reproducible in subgroups. Comparison of the states of memorization and retrieval showed that, in the state of memorization, the EEG power in the γ, β2, and θ bands was significantly lower throughout the cortical surface. Comparison of the active states with the reference state of rest showed that, in both active states, changes in the EEG power were of the same direction in the majority of the frequency bands (an increase in the θ, β2, and γ bands and a decrease in the α2 band) except α1, in which memorization was predominantly accompanied by a decrease in the power, whereas retrieval was associated with an increase. No significant differences were found between the states of memorization and retrieval in the HR or the subjective estimate of task difficulty. The results can be interpreted as a reflection of cognitive-specific forms of general preparatory attention.  相似文献   

20.
Energy characteristics (power spectra) of short-term (less than 1 s) EEG-reactions were studied in dogs in the course of instrumental conditioning. These reactions were observed in different areas of the cortex during selective attention in response to positive conditioned stimuli. They immediately preceded strong blow with a paw on the pedal of feeding cup and taking the reward. The EEG power at these moments was 1.5-3 times higher than the baseline EEG power level in a prestimulus period. The high-frequency structure of corresponding EEG reactions comprised discrete individual spectral peaks both in traditional (1-30 Hz) and gamma (30-80 Hz) ranges and higher-frequency components (80-200 Hz) as well. In some cases, the higher-frequency components (80-200 Hz) were most pronounced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号