首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 405 毫秒
1.
采用反向照明的角膜中和方法,光镜下观察了活体家蝇和华虻神经重叠复眼感杆光导的模式.结果表明:其模式不仅与复眼的适应状态有关,而且与复眼的性特化区以及它的性别有关,这一结果用电镜方法得到证实.本文讨论了Boschek和Franceschini等不同研究结果和神经重叠复眼两个亚视觉系统的概念.  相似文献   

2.
【目的】蛾类昆虫的趋光性与复眼明暗适应状态的转化有着直接的关系,本研究旨在阐明光照与草地贪夜蛾Spodotera frugiperda复眼明暗适应状态转化的关系。【方法】在光、暗适应条件和不同光照强度黄光照射下,在不同时间段,用相机迅速拍照,观察统计草地贪夜蛾成虫复眼的明暗适应状态及明、暗适应状态转化率。【结果】在明适应状态下,草地贪夜蛾成虫经黄光照射1 h后,随光照强度的增加,复眼明适应状态保持率逐步升高:雄成虫复眼在0.1~0.5 lx时明适应状态保持率为67.77%(有32.23%的转化为暗适应状态与中间状态),4~6 lx时明适应状态保持率达到100%;雌成虫复眼在7~10 lx时,明适应状态保持率达98.90%。在明适应状态下,经黄光照射3 h后,草地贪夜蛾成虫复眼明适应状态保持率亦随着光照强度的增加逐步升高,在0.1~0.5 lx时雄成虫复眼明适应状态保持率为50.00%,雌成虫为32.23%;在光照强度7~10 lx时,雌雄成虫复眼明适应状态保持率分别为90.00%和100%。在暗适应状态下,草地贪夜蛾成虫经不同光照强度的黄光照射30 min后,成虫复眼向明适应状态逐渐转化:在0.1~0.5 lx光照强度时雌、雄成虫复眼明适应状态转化率均为93.33%;当光照强度达到0.6~0.9 lx时雌成虫复眼的明适应状态转化率达到100%,雄成虫复眼则在1~2 lx时达到100%。【结论】结果说明,草地贪夜蛾成虫有较强的光敏感性,且雌虫对黄光的光敏感性略强于雄虫。  相似文献   

3.
双翅目昆虫复眼性特化光感受器的比较研究   总被引:1,自引:0,他引:1  
雄性双翅目昆虫,包括家蝇Musca domestica、丽蝇Calliphora erythrocephala、华虻Tabanus mandarinus和憎黄虻Atylotus miser Szilady,其复眼性特化光感受器中央小网膜细胞R7的分布从背区扩展到腹区。在雄性家蝇、华虻和憎黄虻复眼中,性特化光感受器中央小网膜细胞R7的感杆延伸到基底膜,并同中央小网膜细胞R8的感杆并列排列。但在雄性丽蝇复眼中,性特化光感受器中央小网膜细胞R7的感杆不延伸到基底膜。在雌性双翅目昆虫复眼中,性特化光感受器中央小网膜细胞R7仅仅分布在复眼的腹区,其数量比中央小网膜细胞R8少得多。  相似文献   

4.
利用逆向照明方法及角膜中和技术,观察了暗适应、明适应和强光适应状态下,家蝇(Musca domestica)复眼感杆中光通量的变化。在强光适应状态下,每个小眼主要呈现一个中心感杆远端的光点像,其外周六个感杆远端光点像模糊不清或消失。利用电子显微镜观察了家蝇复眼小网膜细胞内色素颗粒的移动与适应状态的关系。在强光适应状态下,每个小眼外周六个小网膜细胞No.1~6内绝大部分色素颗粒移动到感杆,而中心两个小网膜细胞No.7~8内色素颗粒并未向感杆移动。但在有些小眼中,小网膜细胞No.7~8内部分色素颗粒移动到感杆。  相似文献   

5.
利用逆向照明方法及角膜中和技术,观察了暗适应、明适应和强光适应状态下,家蝇(Musca domestica)复眼感杆中光通量的变化。在强光适应状态下,每个小眼主要呈现一个中心感杆远端的光点像,其外周六个感杆远端光点像模糊不清或消失。利用电子显微镜观察了家蝇复眼小网膜细胞内色素颗粒的移动与适应状态的关系。在强光适应状态下,每个小眼外周六个小网膜细胞No.1~6内绝大部分色素颗粒移动到感杆,而中心两个小网膜细胞No.7~8内色素颗粒并未向感杆移动。但在有些小眼中,小网膜细胞No.7~8内部分色素颗粒移动到感杆。  相似文献   

6.
龟纹瓢虫成虫的复眼形态及其显微结构   总被引:3,自引:1,他引:3  
利用光镜、组织切片法观察了龟纹瓢虫Propylaea japonica(Thunberg)成虫的复眼形态及其显微结构。结果如下:(1)头正前方观,复眼外形似半球,且后方稍向内合拢。每个复眼约包括630个小眼。(2)每个小眼是由1套屈光器(1个角膜和1个晶锥)、6至8个小网膜细胞及其特化产生的视杆和基细胞等几部分组成。晶体周围及小网膜色素细胞内均含有丰富的色素颗粒。(3)小眼整体纵切显示,其上、下段色素颗粒分布相对较多,中段分布较少。(4)明、暗适应状态对小眼的色素颗粒分布有影响,性别对其分布无明显影响。明适应状态下,其色素颗粒较均匀地分布于视杆两侧上下,暗适应状态时色素颗粒则主要分布在视杆部位的上侧,显示其具有一定的重叠眼性质;而在相同的明、暗适应状态下其雌、雄成虫复眼的色素颗粒分布间无明显差异。  相似文献   

7.
蝗虫复眼小网膜细胞角敏感度的变化规律   总被引:1,自引:0,他引:1  
在不同时间(上午、下午和晚上)和不同适应状态(暗适应和三种不同背景光强度的明适应)下,利用细胞内记录方法测量蝗虫复眼不同区域(背、侧和前区)小网膜细胞的角敏感度,其大小随着复眼区域、适应状态和24小时的周期性变化而变化.  相似文献   

8.
许曼飞  李孟园  姜岩  孟召娜  谭畅  王国昌  边磊 《昆虫学报》2022,65(10):1277-1286
【目的】明确灰茶尺蠖Ectropis grisescens成虫复眼的超微结构及其明暗适应中的变化,探究其调光机制。【方法】采用超景深显微镜测定了灰茶尺蠖成虫复眼的小眼数量、间角、直径和曲率半径等外部参数,并通过组织切片、光学显微镜和透射电子显微镜等技术观察了复眼的内部超微结构;通过光学显微镜观察了灰茶尺蠖成虫复眼在明暗环境中分别适应2 h后晶锥结构及色素颗粒的位置变化。【结果】灰茶尺蠖成虫复眼呈半球形,雌、雄虫单个复眼分别有2 502±105和3 123±78个小眼。小眼自远端至近端由角膜、晶锥、透明区构成的屈光层和由15个视网膜细胞构成的感光层组成。2个初级色素细胞包裹着晶锥,自角膜近端延伸至视网膜细胞核区的远端;每个小眼外围由6个次级色素细胞围绕,自角膜近端延伸至基膜;在透明区内14个视网膜细胞聚集成束(非感杆束),远端与晶锥束末端连接,在感光层内形成闭合型感杆束,延伸至第15个视网膜细胞(基部视网膜细胞)。在明暗适应时,灰茶尺蠖复眼的晶锥细胞间出现开闭,色素颗粒进行纵向位移,以适应外界的光强度的变化。【结论】灰茶尺蠖成虫复眼属于重叠像眼,感杆束为“14+1”模式;屏蔽色素颗粒的移...  相似文献   

9.
昆虫复眼瞳孔调节的一种新机制   总被引:2,自引:1,他引:1  
本文采用细胞内记录方法,研究了蝗虫和螽斯复眼侧区小眼在不同时间(日间和夜间)和不同适应状态(暗适应和明适应)下,小网膜细胞角灵敏度的变化规律.结果表明:小网膜细胞角灵敏度的变化不仅与适应状态有关,而且伴随时间的变化而变化.小眼感杆束直径相应变化用光镜方法得到证实,我们认为在昆虫复眼中存在一种新的瞳孔调节机制.  相似文献   

10.
螺旋粉虱成虫的复眼形态及其内部结构   总被引:1,自引:0,他引:1  
采用扫描电镜和组织切片法,观察了螺旋粉虱Aleurodicus dispersus Russell成虫复眼的形态及其显微结构。结果表明,螺旋粉虱复眼半球状,呈“∞”形分布于头部两侧,单个复眼约由253个小眼组成;各小眼面微凸,复眼中心区域小眼多为规则的六边形,密集排列似蜂窝状;近背区边缘小眼多为五边形或近圆形,小眼排列疏松,且少量相邻小眼的间距较大。雌、雄复眼小眼面积约为85μm2。单个小眼由角膜、晶体、网膜细胞及其特化产生的视杆和基细胞等几部分组成。晶体有四个晶锥细胞构成,晶体、视杆周围和色素细胞内均含有大量的色素颗粒。螺旋粉虱的复眼属于并置复眼。光、暗条件下,小眼的色素颗粒分布有所不同。光适应条件下,色素颗粒较均匀地分布于视杆上下两侧;暗适应状态下,色素颗粒则主要分布在视杆上侧和晶体下侧。而在相同的明、暗适应条件下,性别对色素颗粒的分布无显著影响。  相似文献   

11.
本文提出了一种新的模拟生物视觉神经系统并行信息处理功能的光学方法,它采用了昆虫复眼透镜阵列处理器和非相干光源实现图像矩阵正交变换,它为光神经计算提供了一种可能实现的新途径.  相似文献   

12.
北京萤火虫复眼的光学成像*   总被引:2,自引:0,他引:2  
吴梅英  田丽娟 《昆虫学报》1993,36(2):158-161
本文利用光学成像方法,研究了不同适应状态下的北京萤火虫phrococelia Pekininsis复眼所成的光学重叠像以及复眼的视场角。不同适应状态的晶体柱都能在距离复眼表面300-350μm之处形成光学重叠像。经过暗适应的晶体柱可以对不同物距的目标形成清晰的正重叠像,像的大小随物距的增大而减小;经明适应的晶体柱,成像物距范围变小,重叠像的像面亮度降低;经过漂白处理的晶体柱只能对一定的物距成像,像面亮度最低。 不同数目的晶体柱都能形成一重叠像,并随着其数目的增加,像面亮度也逐渐增强。根据对局部复眼视场范围的观察和其结构特征的了解,认为萤火虫单个复眼的视场角大于180度。  相似文献   

13.
本文计算了复眼锥形晶体柱端面凸球对输入数值孔径的作用,讨论了昆虫重叠型复眼的非相干综合成象特性.  相似文献   

14.
15.
The lens and cornea combine to form a single optical element in which transparency and refraction are the fundamental biophysical characteristics required for a functional visual system. Although lens and cornea have different cellular and extracellular specializations that contribute to transparency and refraction, their development is closely related. In the embryonic mouse, the developing cornea and lens separate early. In contrast, zebra fish lens and cornea remain connected during early development and the optical properties of the cornea and lens observed by slit lamp and quasielastic laser light scattering spectroscopy (QLS) are more similar in the zebra fish eye than in the mouse eye. Optical similarities between cornea and lens of zebra fish may be the result of similarities in the cellular development of the cornea and lens.  相似文献   

16.
夜蛾复眼转化速度与光暗适应的时间关系   总被引:10,自引:1,他引:9  
高慰曾 《昆虫学报》1989,32(3):306-310
夜行蛾类的复眼,随光、暗适应时间而逐步转化,这种转化是可逆的.以屏蔽色素分布范围的大小为指标来判断复眼的转化速度得以下结果:1.从亮眼到暗眼:亮眼进入暗适应后其屏蔽色素随暗适应时间的增加而逐步向远心端方向集中.屏蔽色素的移动是减速进行的.暗适应开始后的前3分钟,每分钟移动百分率为10.7,当暗到10—15分钟时每分钟移动百分率为4.6,再暗到60—150分钟时每分钟移动百分率为0.7.屏蔽色素移动的速度个体间差异较大,完成全过程大多数个体需150分钟,少数个体只需60分钟,另有个别个体经过270分钟暗适应仍尚未完成全过程.2.从暗眼到亮眼:暗眼受光后,其屏蔽色素随光适应时间的增加而向近心端方向扩散,色素移动速度随时间的增加而减缓.转化全过程约需60分钟.  相似文献   

17.
The eye is a very sophisticated system of optical elements for the preeminent sense of vision. In recent years, the number of laser surgery to correct the optical aberration such as myopia or astigmatism has significantly increased. Consequently, improving the knowledge related to the interactions of light with the eye is very important in order to enhance the efficiency of the surgery. For this reason, a complete optical characterization of the porcine eye is presented in this study. Kubelka‐Munk and Inverse Adding‐Doubling methods were applied to spectroscopy measurement to determine the absorption and scattering coefficients. Furthermore, the refractive index has been measured by ellipsometry. The different parameters were obtained for the cornea, lens, vitreous humor, sclera, iris, choroids and eyelid in the visible and infrared region. Thereafter, the results are implemented in a COMSOL Multiphysics® software to create an eye model. This model gives a better understanding of the propagation of light in the eye by adding optical parts such as the iris, the sclera or the ciliary bodies. Two simulations show the propagation of light from the cornea to the retina but also from the sclera to the retina. This last possibility provides a better understanding of light propagation during eye laser surgery such as, for example, transscleral cyclophotocoagulation. Figure: Eye simulation models allow the development of new laser treatments in a simple and safe way for patients. To this purpose, the creation of an eye simulated model based on optical parameters obtained from experimental data is presented in this study. This model will facilitate the understanding of the light propagation inside the porcine eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号