首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation of renin-angiotensin system contributes to the development of metabolic syndrome and diabetes as well as hypertension. However, it remains undetermined how renin-angiotensin system is implicated in feeding behavior. Here, we show that angiotensin II type 1 (AT(1)) receptor signaling regulates the hypothalamic neurocircuit that is involved in the control of food intake. Compared with wild-type Agtr1a(+/+) mice, AT(1) receptor knock-out (Agtr1a(-/-)) mice were hyperphagic and obese with increased adiposity on an ad libitum diet, whereas Agtr1a(-/-) mice were lean with decreased adiposity on a pair-fed diet. In the hypothalamus, mRNA levels of anorexigenic neuropeptide corticotropin-releasing hormone (Crh) were lower in Agtr1a(-/-) mice than in Agtr1a(+/+) mice both on an ad libitum and pair-fed diet. Furthermore, intracerebroventricular administration of CRH suppressed food intake both in Agtr1a(+/+) and Agtr1a(-/-) mice. In addition, the Crh gene promoter was significantly transactivated via the cAMP-responsive element by angiotensin II stimulation. These results thus demonstrate that central AT(1) receptor signaling plays a homeostatic role in the regulation of food intake by maintaining gene expression of Crh in hypothalamus and suggest a therapeutic potential of central AT(1) receptor blockade in feeding disorders.  相似文献   

2.
3.
Hypothalamic inflammation has been known as a contributor to high-fat diet (HFD)-induced insulin resistance and obesity. Myeloid-specific sirtuin 1 (SIRT1) deletion aggravates insulin resistance and hypothalamic inflammation in HFD-fed mice. Neurogranin, a calmodulin-binding protein, is expressed in the hypothalamus. However, the effects of myeloid SIRT1 deletion on hypothalamic neurogranin has not been fully clarified. To investigate the effect of myeloid SIRT1 deletion on food intake and hypothalamic neurogranin expression, mice were fed a HFD for 20 weeks. Myeloid SIRT1 knockout (KO) mice exhibited higher food intake, weight gain, and lower expression of anorexigenic proopiomelanocortin in the arcuate nucleus than WT mice. In particular, KO mice had lower ventromedial hypothalamus (VMH)-specific neurogranin expression. However, SIRT1 deletion reduced HFD-induced hypothalamic neurogranin. Furthermore, hypothalamic phosphorylated AMPK and parvalbumin protein levels were also lower in HFD-fed KO mice than in HFD-fed WT mice. Thus, these findings suggest that myeloid SIRT1 deletion affects food intake through VMH-specific neurogranin-mediated AMPK signaling and hypothalamic inflammation in mice fed a HFD.  相似文献   

4.
Neuropeptide Y (NPY), a putative neurotransmitter abundant in the brain, has recently been shown to act within the hypothalamus, inducing a powerful eating response and a specific appetite for carbohydrates. In the present study, NPY (235 pmol) injected bilaterally in the paraventricular nucleus three times a day for 10 days caused approximately a two-fold increase in daily food intake, a six-fold increase in the rate of body weight gain and a three-fold increase in the body fat of female rats. Subsequently, the food intake and body weight of these subjects decreased precipitously, reaching control levels 20 days postinjection. These findings, demonstrating that exogenous NPY is capable of overriding mechanisms of satiety and body weight control, suggest that disturbances in NPY function may play a role in some disorders of eating behavior and body weight regulation.  相似文献   

5.
6.
7.
Summary In order to study the distribution of neuropeptide Y-like immunoreactivity in the human hypothalamus, an immunocytochemical localization of this peptide was performed. Using antibodies developed against synthetic porcine neuropeptide Y (NPY), we have been able to localize immunoreactivity in neuronal cell bodies located exclusively in the infundibular nucleus. Immunostained fibers were found in several regions in the hypothalamus with a high concentration in the periventricular areas. Fibers were also found in the neurovascular zone of the median eminence, the pituitary stalk and the posterior pituitary. These results suggest that immunoreactive material related to porcine NPY is present in the human hypothalamus, with a distribution similar to that observed in the rat.  相似文献   

8.
Huang XF  Yu Y  Li Y  Tim S  Deng C  Wang Q 《Neurochemical research》2008,33(9):1881-1888
This study examined changes in neuropeptide Y (NPY) Y2 receptor binding in the brains of C57BL/6 mice in response to different levels of high-fat diets via three dietary intervention methods: high-fat diet, switching from high- to low-fat diet and finally, energy restricted high-fat diet. Forty-five C57Bl/6 male mice were fed a high-fat diet for 8 weeks and then classified as diet-induced obese (DIO) or diet-resistant (DR) mice according to the highest and lowest body weight gainers, respectively. The DIO and DR mice were then randomly divided into three groups each and either continued on their high-fat diet ad libitum (DIO-H and DR-H), changed to a low-fat diet (DIO-L and DR-L) or pair-fed via energy restricted high-fat diet (DIO-P and DR-P) for a further 6 weeks. During the course of this study, body weight, energy intake and plasma peptide YY (PYY) were measured. The study revealed that the replacement of a high-fat diet with a low-fat diet was associated with a significant lowering of ventromedial hypothalamic (VMH) Y2 receptor binding in both the DIO-L and DR-L mice (−37%, −36%), and also a lowered plasma PYY level in the DIO-L mice (−25%). Despite a continued consumption of the high-fat diet, energy restricted pair feeding caused a lower VMH Y2 receptor binding in the obese mice (DIO-P) following weight loss compared to the DR-P mice (−14%). In conclusion, this study showed that changing diets from high- to low-fat can significantly lower the VMH Y2 receptor binding irrespective to the obesity phenotype. Energy restriction, even while on high-fat feeding, can cause a lower VMH Y2 receptor binding compared to DR mice even after body weight loss to similar levels. This suggests either a possible intrinsic nature of the DIO mice or a body weight set-point re-establishment to drive body weight regain.  相似文献   

9.
Neuropeptide Y (NPY) is the most potent stimulant of feeding when administered by intracerebroventricular injection. Despite this, there is conflicting evidence as to its importance in the regulation of daily food intake and energy balance. It has been suggested that whilst it is important in the response to starvation it has little role in the regulation of daily food intake. To investigate the role of NPY in the regulation of food intake, anti-sense cRNA to NPY was expressed in the arcuate nucleus of adult male rats. The anti-sense NPY (AS-NPY) construct was initially tested in vitro and there was a decrease of approximately 50% in NPY release from anti-sense treated cells compared to controls (16.3 +/- 2.0 fmol/L [AS-NPY] vs 37.3 +/- 7.7 fmol/L [control], mean +/- SEM p < 0.05). NPY release from hypothalamic explants from anti-sense injected animals was decreased by over 50% compared to those from controls at both 15 and 20 days after AAV injection (15 days 42% +/- 6.5% [AS-NPY] vs 100% +/- 36% [control], 20 days 41% +/- 6% [AS-NPY] vs 100% +/- 27% [control] mean+/-SEM, p < 0.05). In a study lasting for 50 days, weight gain was significantly lower in anti-sense injected animals from day 16 (day 16: 6.25 +/- 1.10 g [AS-NPY] vs 9.42 +/- 0.65 g [control] mean +/- SEM, p < 0.05) and remained so until the end of the study when they had gained approximately 40% less weight than controls (day 50: 52.0 +/- 9.6 g [AS-NPY] vs 82.0 +/- 6.3 g [control] mean +/- SEM, p < 0.01). Cumulative food intake was significantly lower in the anti-sense injected animals from day 23 (day 23: 225.8 +/- 1.9 g [AS-NPY] vs 250.6 +/- 8.7 g [control], mean +/- SEM, p < 0.05) and remained so until the end of the study (day 50: 834.5 +/- 14.8 g [AS-NPY] vs 926.0 +/- 31.7 g [control], mean +/- SEM, p < 0.05). Similarly mean daily food intake was also reduced in the anti-sense injected animals (days 7-14: 24.9 +/- 0.4 g/day [AS-NPY] vs 27.2 +/- 0.4 g/day [control], mean +/- SEM, p < 0.01). These data are supportive of a role for NPY in the regulation of daily food intake as well as in response to starvation.  相似文献   

10.
目的:探讨NUCB2/nesfatin-1对小鼠摄食行为的调控及机制。方法:利用侧脑室埋管,免疫组化染色等方法,探讨侧脑室和外周注射nesfatin-1对小鼠摄食行为的影响。结果:侧脑室注射不同剂量nesfatin-1(0.3μg,1μg,3μg),注药后4 h夜间进食量明显减少,且呈显著剂量依赖关系(t=2.61~4.78,P0.05~0.01),侧脑室注射3μg nesfatin-1,小鼠前3小时累积摄食量明显降低(t=8.69~10.73,P0.01),且持续降低12小时(t=2.64,P0.05),同时餐间间隔时间明显延长(t=2.66,P0.05),每分钟/1-4 h进食量明显降低(t=2.63,P0.05),且进食每克食物所用时间明显增加(t=3.02,P0.05)。在下丘脑弓状核,外侧区和背内侧核均有NUCB2/nesfatin-1免疫阳性神经元表达。皮下或腹腔注射nesfatin-1,小鼠进食量和进食行为均无显著改变(P0.05)。结论:中枢nesfatin-1可抑制小鼠摄食行为。  相似文献   

11.
Animals living in temperate climates with predictable seasonal changes in food availability may use seasonal information to engage different metabolic strategies. Siberian hamsters decrease costs of thermoregulation during winter by reducing food intake and body mass in response to decreasing or short-day lengths (SD). These experiments examined whether SD reduction in food intake in hamsters is driven, at least in part, by altered behavioral responses to ghrelin, a gut-derived orexigenic peptide which induces food intake via NPY-dependent mechanisms. Relative to hamsters housed in long-day (LD) photoperiods, SD hamsters consumed less food in response to i.p. treatment with ghrelin across a range of doses from 0.03 to 3 mg/kg. To determine whether changes in photoperiod alter behavioral responses to ghrelin-induced activation of NPY neurons, c-Fos and NPY expression were quantified in the arcuate nucleus (ARC) via double-label fluorescent immunocytochemistry following i.p. treatment with 0.3 mg/kg ghrelin or saline. Ghrelin induced c-Fos immunoreactivity (-ir) in a greater proportion of NPY-ir neurons of LD relative to SD hamsters. In addition, following ghrelin treatment, a greater proportion of ARC c-Fos-ir neurons were identifiable as NPY-ir in LD relative to SD hamsters. Changes in day length markedly alter the behavioral response to ghrelin. The data also identify photoperiod-induced changes in the ability of ghrelin to activate ARC NPY neurons as a possible mechanism by which changes in day length alter food intake.  相似文献   

12.
Hibernators exhibit a robust circannual cycle of body mass gain and loss primarily mediated by food intake, but the pathways controlling food intake in these animals have not been fully elucidated. Ghrelin is an orexigenic hormone that increases feeding in all mammals studied so far, but has not until recently been studied in hibernators. In other mammals, ghrelin stimulates feeding through phosphorylation and activation of AMP-activated protein kinase (AMPK). Activation of AMPK phosphorylates and deactivates acetyl Co-A carboxylase (ACC), a committed step in fatty acid synthesis. In order to determine the effects of exogenous ghrelin on food intake and metabolic factors (i.e. non-esterified fatty acids (NEFAs), and hypothalamic AMPK and ACC) in hibernators, ghrelin was peripherally injected into ground squirrels in all four seasons. Changes in food intake and body mass were recorded over a 2-6 hour period post injections, and squirrels were euthanized. Brains and blood were removed, and Western blots were performed to determine changes in phosphorylation of hypothalamic AMPK and ACC. A colorimetric assay was used to determine changes in concentration of serum NEFAs. We found that food intake, body mass, and locomotor activity significantly increased with ghrelin injections versus saline-injected controls, even in animals injected during their aphagic winter season. Injected ghrelin was correlated with increased phosphorylation of AMPK, but didn't have an effect on ACC in winter. Ghrelin-injected animals also had increased levels of serum NEFAs compared with saline controls. This study is the first to show an effect of injected ghrelin on a hibernator.  相似文献   

13.
目的:探讨子宫内膜癌组织中C-erbB-2和TTF-1的表达及其与患者临床预后的关系。方法:应用免疫组化S-P法检测正常子宫内膜组织、子宫内膜不典型增生组织、子宫内膜癌组织中C-erbB-2与TTF-1的表达,并分析二者与子宫内膜癌临床病理特征及患者临床预后的关系。结果:子宫内膜癌组织、子宫内膜不典型增生组织、正常子宫内膜组织中C-erbB-2的阳性表达率分别为56.65%、36.67%、16.67%(P0.05),TTF-1的的阳性表达率分别为33.75%、53.33%、70.00%(P0.05)。C-erbB-2的阳性表达与子宫内膜癌的临床病理分期、组织分化、肌层浸润及有无淋巴结转移呈显著正相关(P0.05),与其病理类型无显著相关性(P0.05)。TTF-1的阳性表达与子宫内膜癌的病理分期、组织分化、肌层浸润深度负相关(P0.05),但与有无淋巴结转移及病理类型均无显著相关性(P0.05)。C-erbB-2和TTF-1在子宫内膜癌组织中表达无明显相关性(P=0.303)。子宫内膜癌中C-erbB-2阳性表达者五年生存率(80.90%)显著低于C-erbB-2阴性表达者(93.80%)(P0.05),TTF-1阳性表达者五年生存率(87.70%)略高于TTF-1阴性表达者(85.70%),但差异无统计学意义(P0.05)。结论:子宫内膜癌组织中C-erbB-2的表达显著上调,而TTF-1的表达明显下调,二者表达异常均参与了子宫内膜癌的发生和发展,且C-erbB-2的表达上调与子宫内膜癌患者的不良预后相关。  相似文献   

14.
In rodents, the mediobasal hypothalamus and the hypothalamic paraventricular nucleus (PVN) are implicated in leptin signaling. Surprisingly little data is available on the human hypothalamus. We set out to study the expression of suppressor-of-cytokine-signaling 3 (SOCS3), α-melanocyte stimulating hormone (αMSH) and agouti-related protein (AgRP) in the infundibular nucleus (IFN) and to investigate the relationship between these neuropeptide expressions and serum leptin concentrations in a blood sample taken within 24h before death. We studied post-mortem human brain material by means of quantitative immunocytochemistry. We found that SOCS3 immunoreactivity was widely distributed throughout the hypothalamus, and most prominent in the PVN, whereas expression levels in the IFN were low. Surprisingly, SOCS3 expression in the PVN was inversely related to serum leptin. A significant positive correlation was observed between AgRP and NPY expression in the IFN. The inverse correlation between SOCS3 expression in the PVN and serum leptin was unexpected and may be related to the hypothalamic adaptation to fatal illness rather than to nutritional status, or may represent an interspecies difference.  相似文献   

15.
Adiponectin exerts an insulin-sensitizing effect, improving insulin action in peripheral tissues and restraining insulin resistance. Here, we explore the hypothesis that adiponectin can reproduce some of the actions of insulin/leptin in the hypothalamus. The presence of AdipoR1 and AdipoR2 was mapped to the arcuate and lateral hypothalamic nuclei. Icv adiponectin reduced food intake, which was accompanied by activation/engagement of IRS1/2, ERK, Akt, FOXO1, JAK2 and STAT3. All these actions were dependent on AdipoR1, since inhibition of this receptor, and not of AdipoR2, completely reversed the effects described above. Thus, adiponectin acts in the hypothalamus, activating elements of the canonical insulin and leptin signaling pathways and promoting reduction of food intake.  相似文献   

16.
Physiological and behavioral adjustments of small mammals are important strategies in response to variations in food availability. Although numerous of studies have been carried out in rodents, behavioral patterns in response to food deprivation and re-feeding (FD–RF) are still inconsistent. Here we examined effects of a 24 h FD followed by RF on general activity, serum leptin concentrations and gene expression of orexigenic and anorexigenic hypothalamic neuropeptides in striped hamsters (Cricetulus barabensis) with/without leptin supplements. The time spent on activity was increased by 2.5 fold in FD hamsters compared with controls fed ad libitum (P < 0.01). Body mass, fat mass as well as serum leptin concentrations were significantly decreased in FD hamsters in comparison with ad libitum controls, which were in parallel with hyperactivity. During re-feeding, leptin concentrations increased rapidly to pre-deprivation levels by 12 h, but locomotor activity decreased gradually and did not return to pre-deprivation levels until 5 days after re-feeding. Leptin administration to FD hamsters significantly attenuated the increased activity. Gene expression of hypothalamic neuropeptide Y (NPY) was upregulated in FD hamsters and fell down to control levels when hamsters were re-fed ad libitum, similar to that observed in activity behavior. Leptin supplement induced increases in serum leptin concentrations (184.1%, P < 0.05) in FD hamsters and simultaneously attenuated the increase in activity (45.8%, P < 0.05) and NPY gene expression (35%, P < 0.05). This may allow us to draw a more generalized conclusion that decreased leptin concentrations function as a starvation signal in animals under food shortage; to induce an increase in activity levels, leading animals to forage and/or migrate, and consequently increasing the chance of survival. Decreased concentrations of serum leptin in animals subjected to food shortage may induce an upregulation of gene expression of hypothalamus NPY, consequently driving a significant increase in foraging behavior.  相似文献   

17.
CTRP4 is a unique member of the C1q family, possessing two tandem globular C1q domains. Its physiological function is poorly defined. Here, we show that CTRP4 is an evolutionarily conserved, ∼34-kDa secretory protein expressed in the brain. In human, mouse, and zebrafish brain, CTRP4 expression begins early in development and is widespread in the central nervous system. Neurons, but not astrocytes, express and secrete CTRP4, and secreted proteins form higher-order oligomeric complexes. CTRP4 is also produced by peripheral tissues and circulates in blood. Its serum levels are increased in leptin-deficient obese (ob/ob) mice. Functional studies suggest that CTRP4 acts centrally to modulate energy metabolism. Refeeding following an overnight fast induced the expression of CTRP4 in the hypothalamus. Central administration of recombinant protein suppressed food intake and altered the whole-body energy balance in both chow-fed and high-fat diet-fed mice. Suppression of food intake by CTRP4 is correlated with a decreased expression of orexigenic neuropeptide (Npy and Agrp) genes in the hypothalamus. These results establish CTRP4 as a novel nutrient-responsive central regulator of food intake and energy balance.  相似文献   

18.
Aged Wistar rats are characterized by leptin and insulin resistance. The expression of SOCS-3 in hypothalamus increases with ageing. Food restriction during 3 months decreases obesity Lee index in aged rats with respect to their ad libitum aged-mates and brings serum leptin concentrations to values close to those of young rats. Food restriction partially reverts the increases in SOCS-3 mRNA levels associated with ageing. These results suggest that SOCS-3 may be a mediator of hypothalamic leptin resistance in the aged Wistar rat and that the hyperleptinemia associated with ageing is, at least in part, responsible for the increase of SOCS-3 expression in hypothalamus.  相似文献   

19.
While a dysregulation in neuropeptide Y (NPY) signaling has been described in rodent models of obesity, few studies have investigated the time-course of changes in NPY content and responsiveness during development of diet-induced obesity. Therefore we investigated the effect of differing lengths (2-17 weeks) of high-fat diet on hypothalamic NPY peptide content, release and NPY-induced hyperphagia. Male Sprague-Dawley rats (211 +/- 3 g) were fed either a high-fat diet (30% fat) or laboratory chow (5% fat). Animals were implanted with intracerebroventricular cannulae to investigate feeding responses to NPY (0.5 nmol, 1 nmol) after 4 or 12 weeks of diet. At the earlier stage of obesity, NPY-induced hyperphagia was not altered; however, animals maintained on the high-fat diet for the longer duration were hyper-responsive to NPY, compared to chow-fed control rats (p < 0.05). Overall, hypothalamic NPY peptide content tended to be decreased from 9 to 17 weeks of diet (p < 0.05). Total hypothalamic NPY content was negatively correlated with plasma leptin concentration (p < 0.05), suggesting the hypothalamic NPY system remains responsive to leptin's inhibitory signal. In addition, hypothalamic NPY overflow was significantly reduced in high-fat fed animals (p < 0.05). Together these results suggest a reduction in hypothalamic NPY activity in high-fat fed animals, perhaps in an attempt to restore energy balance.  相似文献   

20.
Recent studies revealed that Abelson helper integration site 1 (AHI1) plays a role in brain development. However, little is known about the role of AHI1 in adult brain. To directly assess the role of AHI1 in the adult brain, we cloned full-length cDNA of rat AHI1 and observed prominent expression of AHI1 in the hypothalamus, which contributes mainly to the control of energy homeostasis. Furthermore, we demonstrated that food deprivation caused induction of AHI1 in the hypothalamus and subsequent re-feeding down-regulated AHI1 expression, suggesting the involvement of AHI1 in feeding control. Moreover, the expression of AHI1 was increased in serum-depleted Neuro2A cells and restored by subsequent insulin treatment. Furthermore, treatment in food-deprived rat with intraperitoneal glucose also reduced the increased AHI1 expression. These results demonstrate that AHI1 expression can be regulated through diet and suggest the novel role of AHI1 in feeding behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号