首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Induction constants (K(ind)) and repression constants (K(rep)), which are a measure of the affinity of the inducers or repressors for the induction systems, were measured for mandelate, benzoate and p-hydroxybenzoate in Pseudomonas putida. 2. From these results, the enzymic response of the organism to media containing pairs of these substrates was predicted. Nitrogen-limited chemostats, operated at high growth rates, were used to investigate these predictions in cells grown first on one aromatic substrate with the second added later. 3. In general, the values of K(ind) and K(rep) predicted quite accurately the response to substrate mixtures. Thus, in the presence of mandelate and either benzoate or p-hydroxybenzoate, the enzymes of mandelate metabolism were repressed almost completely, and the bacteria were fully induced for the alternative substrate (benzoate or p-hydroxybenzoate), which was preferentially utilized for growth. When benzoate and p-hydroxybenzoate were the two substrates in the mixture, the enzymes for metabolism of the latter were strongly repressed and growth took place mainly on benzoate. 4. The enzymic response to mixed substrates did not result in the metabolism of the better growth substrate, but in the substrate requiring the synthesis of fewer enzymes. Thus benzoate is used in preference to mandelate although the latter supports a faster growth rate. It is nevertheless considered that, with our present knowledge of the natural habitat of the organism, it is impossible to decide whether protein economy or growth rate was the factor determining the evolution of this control system.  相似文献   

2.
Regulation of valine catabolism in Pseudomonas putida   总被引:2,自引:10,他引:2       下载免费PDF全文
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amino acid transaminase and isobutyryl-CoA dehydrogenase were synthesized constitutively. d-Amino acid dehydrogenase and branched-chain keto acid dehydrogenase were induced during growth on valine, leucine, and isoleucine, and these enzymes were assumed to be common to the metabolism of all three branched-chain amino acids. The segment of the pathway required for oxidation of isobutyrate was induced by growth on isobutyrate or 3-hydroxyisobutyrate without formation of the preceding enzymes. d-Amino acid dehydrogenase was induced by growth on l-alanine without formation of other enzymes required for the catabolism of valine. d-Valine was a more effective inducer of d-amino acid dehydrogenase than was l-valine. Therefore, the valine catabolic pathway was induced in three separate segments: (i) d-amino acid dehydrogenase, (ii) branched-chain keto acid dehydrogenase, and (iii) 3-hydroxyisobutyrate dehydrogenase plus methylmalonate semialdehyde dehydrogenase. In a study of the kinetics of formation of the inducible enzymes, it was found that 3-hydroxyisobutyrate and methylmalonate semialdehyde dehydrogenases were coordinately induced. Induction of enzymes of the valine catabolic pathway was studied in a mutant that had lost the ability to grow on all three branched-chain amino acids. Strain PpM2106 had lowered levels of branched-chain amino acid transaminase and completely lacked branched-chain keto acid dehydrogenase when grown in medium which contained valine. Addition of 2-ketoisovalerate, 2-ketoisocaproate, or 2-keto-3-methylvalerate to the growth medium of strain PpM2106 resulted in induction of normal levels of branched-chain keto acid dehydrogenase; therefore, the branched-chain keto acids were the actual inducers of branched-chain keto acid dehydrogenase.  相似文献   

3.
C Lochmeyer  J Koch    G Fuchs 《Journal of bacteriology》1992,174(11):3621-3628
The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes.  相似文献   

4.
Abd El-Mawla AM  Beerhues L 《Planta》2002,214(5):727-733
Biosynthesis of benzoic acid from cinnamic acid has been studied in cell cultures of Hypericum androsaemum L. The mechanism underlying side-chain shortening is CoA-dependent and non-beta-oxidative. The enzymes involved are cinnamate:CoA ligase, cinnamoyl-CoA hydratase/lyase and benzaldehyde dehydrogenase. Cinnamate:CoA ligase was separated from benzoate:CoA ligase and 4-coumarate:CoA ligase, which belong to xanthone biosynthesis and general phenylpropanoid metabolism, respectively. Cinnamoyl-CoA hydratase/lyase catalyzes hydration and cleavage of cinnamoyl-CoA to benzaldehyde and acetyl-CoA. Benzaldehyde dehydrogenase finally supplies benzoic acid. In cell cultures of H. androsaemum, benzoic acid is a precursor of xanthones, which accumulate during cell culture growth and after methyl jasmonate treatment. Both the constitutive and the induced accumulations of xanthones were preceded by increases in the activities of all benzoic acid biosynthetic enzymes. Similar changes in activity were observed for phenylalanine ammonia-lyase and the xanthone biosynthetic enzymes benzoate:CoA ligase and benzophenone synthase.  相似文献   

5.
Cell-free extracts of Pseudomonas sp. strains KB 740 and K 172 both contained high levels of glutaryl-CoA dehydrogenase when grown anaerobically on benzoate or other aromatic compounds and with nitrate as electron acceptor. These aromatic compounds have in common benzoyl-CoA as the central aromatic intermediate of anerobic metabolism. The enzymatic activity was almost absent in cells grown aerobically on benzoate regardless whether nitrate was present. Glutaryl-CoA dehydrogenase activity was also detected in cell-free extracts of Rhodopseudomonas, Rhodomicrobium and Rhodocyclus after phototrophic growth on benzoate. Parallel to the induction of glutaryl-CoA dehydrogenase as measured with ferricenium ion as electron acceptor, an about equally high glutaconyl-CoA decarboxylase activity was detected in cell-free extracts. The latter activity was measured with the NAD-dependent assay, as described for the biotin-containing sodium ion pump glutaconyl-CoA decarboxylase from glutamate fermenting bacteria. Glutaryl-CoA dehydrogenase was purified to homogeneity from both Pseudomonas strains. The enzymes catalyse the decarboxylation of glutaconyl-CoA at about the same rate as the oxidative decarboxylation of glutaryl-CoA. The green enzymes are homotetramers (m=170 kDa) and contain 1 mol FAD per subunit. No inhibition was observed with avidin indicating the absence of biotin. The N-terminal sequences of the enzymes from both strains are similar (65%).  相似文献   

6.
Regulation of the mandelate pathway in Pseudomonas aeruginosa   总被引:4,自引:2,他引:2       下载免费PDF全文
The pathway of mandelate metabolism in Pseudomonas aeruginosa is composed of the following steps: l(+)-mandelate --> benzoylformate --> benzaldehyde --> benzoate. These three steps are unique to mandelate oxidation; the benzoate formed is further metabolized via the beta-ketoadipate pathway. The first enzyme, l(+)-mandelate dehydrogenase, is induced by its substrate. The second and third enzymes, benzoylformate decarboxylase and benzaldehyde dehydrogenase, are both induced by benzoylformate. The same benzaldehyde dehydrogenase, or one very similar to it, is also induced by beta-ketoadipate, an intermediate in the subsequent metabolism of benzoate. This dehydrogenase may also be induced by adipate or a metabolite of adipate. These conclusions have been drawn from the physiological and genetic properties of wild-type P. aeruginosa strains and from the study of mutants lacking the second and third enzyme activities.  相似文献   

7.
Pseudomonas putida oxidized isoleucine to acetyl-coenzyme A (CoA) and propionyl-CoA by a pathway which involved deamination of d-isoleucine by oxidation and l-isoleucine by transamination, oxidative decarboxylation, and beta oxidation at the ethyl side chain. At least three separate inductive events were required to form all of the enzymes of the pathway: d-amino acid dehydrogenase was induced during growth in the presence of d-isoleucine; branched-chain keto dehydrogenase was induced during growth on 2-keto-3-methylvalerate and enzymes specific for isoleucine metabolism; tiglyl-CoA hydrase and 2-methyl-3-hydroxybutyryl-CoA dehydrogenase were induced by growth on isoleucine, 2-keto-3-methylvalerate, 2-methylbutyrate, or tiglate. Tiglyl-CoA hydrase and 2-methyl-3-hydroxybutyryl-CoA dehydrogenase were purified simultaneously by several enzyme concentration procedures, but were separated by isoelectric focusing. Isoelectric points, pH optima, substrate specificity, and requirements for enzyme action were determined for both enzymes. Evidence was obtained that the dehydrogenase catalyzed the oxidation of 2-methyl-3-hydroxybutyryl-CoA to 2-methylacetoacetyl-CoA. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase catalyzed the oxidation of 3-hydroxybutyryl-CoA, but l-3-hydroxyacyl-CoA dehydrogenase from pig heart did not catalyze the oxidation of 2-methyl-3-hydroxybutyryl-CoA; therefore, they appeared to be different dehydrogenases. Furthermore, growth on tiglate resulted in the induction of tiglyl-CoA hydrase and 2-methyl-3-hydroxybutyryl-CoA dehydrogenase, but these two enzymes were not induced during growth on crotonate or 3-hydroxybutyrate.  相似文献   

8.
The dehydrogenation of substituted 3,5-cyclohexadiene-1,2-diol-1-carboxylic acids by dihydrodihydroxybenzoic acid dehydrogenases from benzoate grown cells of Alcaligenes eutrophus and Pseudomonas sp. B 13 and 3-chlorobenzoate grown cells of the latter organism was examined. No significant differences (Km and Vrel values) were detected for the enzymes from both organisms. The same dihydrodihydroxybenzoic acid dehydrogenase is formed in Pseudomonas sp. B13 during growth on benzoate as well as on 3-chlorobenzoate. The lower turnover rates of 3- and 5-chlorodrodihydroxybenzoic acid compared to dihydrodihydroxybenzoic acid are counterbalanced by an increase in specific activity. With the exception of 4-substituted dihydrodihydroxybenzoic acids exhibiting relative high Km values, only slight sterical and electronic substituent effects are evident. Reaction rates were never reduced to a critical level.  相似文献   

9.
The strictly anaerobic Syntrophus aciditrophicus is a fermenting deltaproteobacterium that is able to degrade benzoate or crotonate in the presence and in the absence of a hydrogen-consuming partner. During growth in pure culture, both substrates are dismutated to acetate and cyclohexane carboxylate. In this work, the unknown enzymes involved in the late steps of cyclohexane carboxylate formation were studied. Using enzyme assays monitoring the oxidative direction, a cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA)-forming cyclohexanecarboxyl-CoA (ChCoA) dehydrogenase was purified and characterized from S. aciditrophicus and after heterologous expression of its gene in Escherichia coli. In addition, a cyclohexa-1,5-diene-1-carboxyl-CoA (Ch1,5CoA)-forming Ch1CoA dehydrogenase was characterized after purification of the heterologously expressed gene. Both enzymes had a native molecular mass of 150 kDa and were composed of a single, 40- to 45-kDa subunit; both contained flavin adenine dinucleotide (FAD) as a cofactor. While the ChCoA dehydrogenase was competitively inhibited by Ch1CoA in the oxidative direction, Ch1CoA dehydrogenase further converted the product Ch1,5CoA to benzoyl-CoA. The results obtained suggest that Ch1,5CoA is a common intermediate in benzoate and crotonate fermentation that serves as an electron-accepting substrate for the two consecutively operating acyl-CoA dehydrogenases characterized in this work. In the case of benzoate fermentation, Ch1,5CoA is formed by a class II benzoyl-CoA reductase; in the case of crotonate fermentation, Ch1,5CoA is formed by reversing the reactions of the benzoyl-CoA degradation pathway that are also employed during the oxidative (degradative) branch of benzoate fermentation.  相似文献   

10.
Two forms of succinic semialdehyde dehydrogenase have been isolated in Klebsiella pneumoniae M5a1. The two enzymes could be separated by filtration on Sephacryl S-300 and their apparent molecular weights were approx. 275,000 and 300,000. The large enzyme is specific for NADP. The smaller enzyme, which is induced by growth on 3-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid and gamma-aminobutyrate, has been purified to 96% homogeneity by affinity chromatography. The NAD-linked succinic semialdehyde dehydrogenase was able to use NADP as cofactor. Its induction is coordinated with 3- and 4-hydroxylase, the enzymes which initiate degradation of 3- and 4-hydroxyphenylacetic acid. The NAD-linked form is also induced by exogenous succinic semialdehyde. The large enzyme is specific for NADP and has been isolated from a defective mutant which lacked the activity of the NAD-linked succinic semialdehyde dehydrogenase. Activity and stability conditions and true K m values for substrates and cosubstrates of the two enzymes were determined. Some aspects of the induction of the NAD-linked enzyme participating in the metabolism of 4-hydroxyphenylacetic and gamma-aminobutyrate were studied.  相似文献   

11.
(1) The relation between the effects of the sulfur-substituted fatty acid analogue, tetradecylthioacetic acid (TTA), dexamethasone and insulin on enzyme induction and growth rate was studied in Morris hepatoma 7800 C1 cells in culture. (2) The activities of the cynanide-insensitive palmitoyl-CoA oxidase and palmitoyl-CoA hydrolase were induced about 2-fold by 50 microM TTA after 72 h of treatment. Catalase was less induced and NADPH-cytochrome-c2 reductase, glucose-6-phosphate dehydrogenase and lactate dehydrogenase were unaffected by the fatty acid analogue. (3) Dexamethasone (250 nM) induced the same enzymes as did TTA, but was a less efficient than 50 microM TTA. However, in combination their effects were more than additive, resulting in 4-7-fold increases. (4) Insulin (400 nM) counteracted the inductive effects of both TTA and dexamethasone on all enzymes except for lactate dehydrogenase, which was induced by the combination of all three compounds. (5) TTA inhibited the growth rate of the cells, and this effect was potentiated by dexamethasone and counteracted by insulin. (6) The enzyme inductions were similar in exponential and plateau phases of growth, indicating that these processes were independently affected by the three compounds.  相似文献   

12.
The metabolism of phenanthrene by a gram-negative organism able to use this compound as a sole source of carbon and energy has been examined. 1-Hydroxy-2-naphthoic acid was oxidized by oxygen in a reaction catalyzed by a dioxygenase which was activated by ferrous ions. The stoichiometry of the oxidation and the UV spectrum of the product were consistent with the identification of the product as 2'-carboxybenzalpyruvate. This was confirmed by cleaving the product with a partially purified aldolase to yield 2-carboxybenzaldehyde and pyruvate. A number of enzymes for the metabolism of 1-hydroxy-2-naphthoic acid were induced by growth on phthalate or (less well) by growth on protocatechuate. The latter supported only a slow rate of growth, and this and poor induction may have been due to a slow rate of entry into the cell.  相似文献   

13.
Escherichia coli grows on long-chain fatty acids after a distinct lag phase. Cells, preadapted to palmitate, grow immediately on fatty acids, indicating that fatty acid oxidation in this bacterium is an inducible system. This hypothesis is supported by the fact that cells grown on palmitate oxidize fatty acids at rates 7 times faster than cells grown on amino acids and 60 times faster than cells grown on a combined medium of glucose and amino acids. The inhibitory effect of glucose may be explained in terms of catabolite repression. The activities of the five key enzymes of beta-oxidation [palmityl-coenzyme A (CoA) synthetase, acyl-CoA dehydrogenase, enoyl-CoA hydrase, beta-hydroxyacyl-CoA dehydrogenase, and thiolase] all vary coordinately over a wide range of activity, indicating that they are all under unit control. The ability of a fatty acid to induce the enzymes of beta-oxidation and support-growth is a function of its chain length. Fatty acids of carbon chain lengths of C(14) and longer induce the enzymes of fatty acid oxidation and readily support growth, whereas decanoate and laurate do not induce the enzymes of fatty acid oxidation and only support limited growth of palmitate-induced cells. Two mutants, D-1 and D-3, which grow on decanoate and laurate were isolated and were found to contain constitutive levels of the beta-oxidation enzymes. Short-chain fatty acids (相似文献   

14.
Neurospora crassa is able to use long-chain fatty acids as the sole carbon and energy source. After growth on oleate there was nearly a 10-fold induction of the acyl coenzyme A (CoA) synthetase and a fivefold increase in the activity of the 3-hydroxyacyl-CoA dehydrogenase. There was a slight induction of the enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase, but no apparent induction of the flavin-linked acyl-CoA dehydrogenase. These noncoordinate changes in the fatty acid degradation enzymes suggest that they are not organized into a multienzyme complex as is found in bacteria.  相似文献   

15.
An organism identified as Pseudomonas putida was isolated from an enrichment culture with 2-furoic acid as its sole source of carbon and energy. The organism contained a 2-furoyl-coenzyme A (CoA) synthetase to form 2-furoyl-CoA and a 2-furoyl-CoA dehydrogenase to form 5-hydroxy-2-furoyl-CoA as the first two enzymes involved in the degradation. Tungstate, the specific antagonist of molybdate, decreased growth rate and consumption of 2-furoic acid but had no influence on growth with succinate. Correspondingly, the 2-furoyl-CoA dehydrogenase activity decreased when the organism was grown on 2-furoic acid in the presence of increasing amounts of tungstate. The addition of molybdate reversed the negative effect on 2-furoyl-CoA dehydrogenase activity, which points to the involvement of a molybdoenzyme in this reaction. Both enzymes studied were inducible. No plasmid was detected in this organism.  相似文献   

16.
A methane-utilizing organism capable of growth both on methane and on more complex organic substrates as a sole source of carbon and energy, has been isolated and studied in detail. Suspensions of methane-grown cells of this organism oxidized C-1 compounds (methane, methanol, formaldehyde, formate); hydrocarbons (ethane, propane); primary alcohols (ethanol, propanol); primary aldehydes (acetaldehyde, propionaldehyde); alkenes (ethylene, propylene); dimethylether; and organic acids (acetate, malate, succinate, isocitrate). Suspensions of methanol-or succinate-grown cells did not oxidize methane, ethane, propane, ethylene, propylene, or dimethylether, suggesting that the enzymatic systems required for oxidation of these substrates are induced only during growth on methane. Extracts of methane-grown cells contained a particulate reduced nicotinamide adenine dinucleotide-dependent methane monooxygenase activity. Oxidation of methanol, formaldehyde, and primary alcohols was catalyzed by a phenazine methosulfate-linked, ammonium ion-requiring methanol dehydrogenase. Oxidation of primary aldehydes was catalyzed by a phenazine methosulfate-linked, ammonium ion-independent aldehyde dehydrogenase. Formate was oxidized by a nicotinamide adenine dinucleotide-specific formate dehydrogenase. Extracts of methane-grown, but not succinate-grown, cells contained the key enzymes of the serine pathway, hydroxypyruvate reductase and malate lyase, indicating that the enzymes of C-1 assimilation are induced only during growth on C-1 compounds. Glucose-6-phosphate dehydrogenase was induced during growth on glucose. Extracts of methane-grown cells contained low levels of enzymes of the tricarboxylic acid cycle, including alpha-keto glutarate dehydrogenase, relative to the levels found during growth on succinate.  相似文献   

17.
Enzymes of the mandelate pathway in bacterium N.C.I.B. 8250   总被引:33,自引:17,他引:16       下载免费PDF全文
1. Bacterium N.C.I.B. 8250 was grown on dl-mandelate, benzyl alcohol, benzoyl-formate, benzaldehyde and benzoate and also on 2-hydroxy, 4-hydroxy, 3,4-dihydroxy and 4-hydroxy-3-methoxy analogues of these compounds. The enzymic complements of the cells were determined and the specificities of some of the enzymes examined. 2. Growth on mandelate or benzoylformate induces l-mandelate dehydrogenase, benzoylformate decarboxylase, benzyl alcohol dehydrogenase and a heat-stable as well as a heat-labile benzaldehyde dehydrogenase. Growth on benzyl alcohol or benzaldehyde induces benzyl alcohol dehydrogenase and the heat-labile benzaldehyde dehydrogenase. 3. The enzymes of the mandelate-to-benzoate pathway are non-specifically active on, and induced by, all the substituted analogues that support growth. 4. Benzoate oxidase is induced by growth on benzoate or on 2-hydroxybenzoate. 2-Hydroxybenzoate hydroxylase, 4-hydroxybenzoate hydroxylase and 4-hydroxy-3-methoxybenzoate O-demethylase are induced only by growth on homologous substrates. 5. The results of the investigation are discussed with regard to the possible regulation of the enzyme systems.  相似文献   

18.
19.
The sulfate-reducing bacterium Desulfococcus multivorans uses various aromatic compounds as sources of cell carbon and energy. In this work, we studied the initial steps in the aromatic metabolism of this strictly anaerobic model organism. An ATP-dependent benzoate coenzyme A (CoA) ligase (AMP plus PPi forming) composed of a single 59-kDa subunit was purified from extracts of cells grown on benzoate. Specific activity was highest with benzoate and some benzoate derivatives, whereas aliphatic carboxylic acids were virtually unconverted. The N-terminal amino acid sequence showed high similarities with benzoate CoA ligases from Thauera aromatica and Azoarcus evansii. When cultivated on benzoate, cells strictly required selenium and molybdenum, whereas growth on nonaromatic compounds, such as cyclohexanecarboxylate or lactate, did not depend on the presence of the two trace elements. The growth rate on benzoate was half maximal with 1 nM selenite present in the growth medium. In molybdenum- and/or selenium-depleted cultures, growth on benzoate could be induced by addition of the missing trace elements. In extracts of cells grown on benzoate in the presence of [75Se]selenite, three radioactively labeled proteins with molecular masses of approximately 100, 30, and 27 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The 100- and 30-kDa selenoproteins were 5- to 10-fold induced in cells grown on benzoate compared to cells grown on lactate. These results suggest that the dearomatization process in D. multivorans is not catalyzed by the ATP-dependent Fe-S enzyme benzoyl-CoA reductase as in facultative anaerobes but rather involves unknown molybdenum- and selenocysteine-containing proteins.  相似文献   

20.
By using a new high-pressure liquid chromatography assay, the increase in urinary hipprate following ingestion of shikimic, quinic, and cyclohexanecarboxylic acid was studied to quantitate the extent of aromatization in germfree, gnotobiotic, and converitonal rats. Germfree rats aromatized 2% of a single dose of shikimic acid or quinic acid and 44% of cyclohexanecarboxylic acid. Conventional rats aromatized all three compounds; shikimic (12%), quinic (12%), and cyclohexanecarboxylic acid (61%). A human fecal flora was fed to otherwise germfree rats to determine the degree of association and the resulting effect upon the metabolism of shikimic, quinic, and cyclohexanecarboxylic acids in vivo. Following establishment of the human microflora and subsequent feedings of shikimic or quinic acids, excretion of urinary hippurate was five to seven times greater (10–15% of the dose) than in germfree rats fed the same acids. The results suggest that the intestinal flora is needed to metabolize the shikimic acid to substrate(s) (probably cyclohexanecarboxylic acid). This substrate can then be aromatized by mammalian enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号