首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huber SC 《Plant physiology》1989,91(2):656-662
It is not known why some species accumulate high concentrations of sucrose in leaves during photosynthesis while others do not. To determine the possible basis, we have studied 10 species, known to differ in the accumulation of sucrose, in terms of activities of sucrose hydrolyzing enzymes. In general, acid invertase activity decreased as leaves expanded; however, activities remaining in mature, fully expanded leaves ranged from low (<10 micromoles per gram fresh weight per hour) to very high (>100 micromoles per gram fresh weight per hour). In contrast, sucrose synthase activities were low and relatively similar among the species (4-10 micromoles per gram fresh weight per hour). Importantly, leaf sucrose concentration, measured at midafternoon, was negatively correlated with acid invertase activity. We propose that sucrose accumulation in vacuoles of species such as soybean and tobacco is prevented by acid invertase-mediated hydrolysis. Initial attempts were made to characterize the relatively high activity of acid invertase from mature soybean leaves. Two apparent forms of the enzyme were resolved by Mono Q chromatography. The two forms had similar affinity for substrate (apparent Km [sucrose] = 3 millimolar) and did not interconvert upon rechromatography. It appeared that the loss of whole leaf invertase activity during expansion was largely the result of changes in one of the enzyme forms. Overall, the results provide a mechanism to explain why some species do not accumulate sucrose in their leaves. Some futile cycling between sucrose and hexose sugars is postulated to occur in these species, and thus, the energy cost of sucrose production may be higher than is generally thought.  相似文献   

2.
Maize (Zea mays L. cv. Pioneer 3184) leaf elongation rate was measured diurnally and was related to diurnal changes in the activities of sucrose metabolizing enzymes and carbohydrate content in the elongating portion of the leaf. The rate of leaf elongation was greatest at midday (1300 hours) and was coincident with the maximum assimilate export rate from the distal portion of the leaf. Leaf elongation during the light period accounted for 70% of the total observed increase in leaf length per 24 hour period. Pronounced diurnal fluctuations were observed in the activities of acid and neutral invertase and sucrose phosphate synthase. Maximum activities of sucrose phosphate synthase and acid invertase were observed at 0900 hours, after which activity declined rapidly. The activity of sucrose phosphate synthase was substantially lower than that observed in maize leaf source tissue. Neutral invertase activity was greatest at midday (1200 hours) and was correlated positively with diurnal changes in leaf elongation rate. There was no significant change in the activity of sucrose synthase over the light/dark cycle. Sucrose accumulation rate increased during a period when leaf elongation rate was maximal and beginning to decline. Maximum sucrose concentration was observed at 1500 hours, when the activities of sucrose metabolizing enzymes were low. At no time was there a significant accumulation of hexose sugars. The rate of starch accumulation increased after the maximum sucrose concentration was observed, continuing until the end of the light period. There was no delay in the onset of starch mobilization at the beginning of the dark period, and essentially all of the starch was depleted by the end of the night. Mobilization of starch in the elongating tissue at night could account for a significant proportion of the calculated increase in the tissue dry weight due to growth. Collectively, the results suggested that leaf growth may be controlled by the activities of certain sucrose metabolizing enzymes and may be coordinated with assimilate export from the distal, source portion of the leaf. Results are discussed with reference to diurnal photoassimilation and export in the distal, source portion of the leaf.  相似文献   

3.
Cold storage of potato (Solanum tuberosum L.) tubers is known to cause accumulation of reducing sugars. Hexose accumulation has been shown to be cultivar-dependent and proposed to be the result of sucrose hydrolysis via invertase. To study whether hexose accumulation is indeed related to the amount of invertase activities, two different approaches were used: (i) neutral and acidic invertase activities as well as soluble sugars were measured in cold-stored tubers of 24 potato cultivars differing in the cold-induced accumulation of reducing sugars and (ii) antisense potato plants with reduced soluble acid invertase activities were created and the soluble sugar accumulation in cold-stored tubers was studied. The cold-induced hexose accumulation in tubers from the different potato cultivars varied strongly (up to eightfold). Large differences were also detected with respect to soluble acid (50-fold) and neutral (5-fold) invertase activities among the different cultivars. Although there was almost no correlation between the total amount of invertase activity and the accumulation of reducing sugars there was a striking correlation between the hexose/sucrose ratio and the extractable soluble invertase activitiy. To exclude the possibility that other cultivar-specific features could account for the obtained results, the antisense approach was used to decrease the amount of soluble acid invertase activity in a uniform genetic background. To this end the cDNA of a cold-inducible soluble acid invertase (EMBL nucleicacid database accession no. X70368) was cloned from the cultivar Desirée, and transgenic potato plants were created expressing this cDNA in the antisense orientation under control of the constitutive 35S cauliflower mosaic virus promotor. Analysis of the harvested and cold-stored tubers showed that inhibition of the soluble acid invertase activity leads to a decreased hexose and an increased sucrose content compared with controls. As was already found for the different potato cultivars the hexose/sucrose ratio decreased with decreasing invertase activities but the total amount of soluble sugars did not significantly change. From these data we conclude that invertases do not control the total amount of soluble sugars in coldstored potato tubers but are involved in the regulation of the ratio of hexose to sucrose.The authors are grateful to Heike Deppner and Christiane Prüßner for tuber harvest and technical assistance during the further analysis. We thank Andrea Knospe for taking care of tissue culture, Birgit Schäfer for patient photographic work, Hellmuth Fromme and the greenhouse personnel for attending plant growth and development and Astrid Basner for elucidating the sequence of clone INV-19. The work was supported by the Bundesministerium für Forschung und Technologie (BMFT).  相似文献   

4.
In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.  相似文献   

5.
Sucrose phosphate synthase and acid invertase activities in the mature leaves of roses (Rosa hybrida cv Golden Times) were greater in plants grown under a higher night temperature than under a lower temperature regime. In young shoots, the activity of acid invertase was promoted by the lower temperature while that of sucrose synthase was increased at the higher temperature. At both temperatures benzyladenine when applied to the axillary bud stimulated sucrose phosphate synthase activity and advancement of its peak of activity in the leaf subtending to the bud, and also stimulated sucrose synthase activity in the young shoot. At the lower temperature, application of benzyladenine to the axillary bud stimulated acid invertase activity in the young shoot but not in the leaves.  相似文献   

6.
The impact of reduced vacuolar invertase activity on photosynthetic and carbohydrate metabolism was examined in tomato (Solanum lycopersicon L.). The introduction of a co-suppression construct (derived from tomato vacuolar invertase cDNA) produced plants containing a range of vacuolar invertase activities. In the leaves of most transgenic plants from line INV-B, vacuolar invertase activity was below the level of detection, whereas leaves from line INV-A and untransformed wild-type plants showed considerable variation. Apoplasmic invertase activity was not affected by the co-suppression construct. It has been suggested that, in leaves, vacuolar invertase activity regulates sucrose content and its availability for export, such that in plants with high vacuolar invertase activity a futile cycle of sucrose synthesis and degradation takes place. In INV-B plants with no detectable leaf vacuolar invertase activity, sucrose accumulated to much higher levels than in wild-type plants, and hexoses were barely detectable. There was a clear threshold relationship between invertase activity and sucrose content, and a linear relationship with hexose content. From these data the following conclusions can be drawn. (i) In INV-B plants sucrose enters the vacuole where it accumulates as hydrolysis cannot take place. (ii) There was not an excess of vacuolar invertase activity in the vacuole; the rate of sucrose hydrolysis depended upon the concentration of the enzyme. (iii) The rate of import of sucrose into the vacuole is also important in determining the rate of sucrose hydrolysis. The starch content of leaves was not significantly different in any of the plants examined. In tomato plants grown at high irradiance there was no impact of vacuolar invertase activity on the rate of photosynthesis or growth. The impact of the cosuppression construct on root vacuolar invertase activity and carbohydrate metabolism was less marked.Abbreviations CaMV Cauliflower Mosaic Virus - WT wild type  相似文献   

7.
Sucrose Metabolism in Bean Plants Under Water Deficit   总被引:10,自引:3,他引:7  
The effects of water stress on sucrose metabolism were evaluatedin bean plants of Tacarigua variety grown for 25 d. Decreasingwater potential and relative water content were observed. Waterstress effects resulted in a decrease of sucrose phosphate synthase(SPS) in both total (substrate saturating conditions) and Pi-insensitive(substrate limiting conditions plus inorganic phosphate) activities.The SPS Pi-insensitive activity was lower than the total SPSactivity, but the decrease in activity induced by water deficitwas relatively lower in the Pi-insensitive; however the activationstate increased during the water deficit period. An increasein sucrose synthase activity increased the activities of bothneutral and acid invertases at moderate water stress (–0·8MPa) and decreased activities at severe water stress(–1·45 MPa). The activity values of neutral invertasewere lower than those for the acid invertase. The starch/sucroseratio decreased and the ratio of total glucose/total fructoseincreased. These results indicate a relevant physiological roleof SPS in bean plants under water stress. Key words: Acid invertase, sucrose phosphate synthase, sucrose synthase  相似文献   

8.
Castrillo  M. 《Photosynthetica》2000,36(4):519-524
Sucrose metabolism was studied at three leaf development stages in two Phaseolus vulgaris L. cultivars, Tacarigua and Montalban. The changes of enzyme activities involved in sucrose metabolism at the leaf development stages were: (1) Sink (9-11 % full leaf expansion, FLE): low total sucrose phosphate synthase (SPS) activity, and higher acid invertase (AI) activity accompanied by low sucrose synthase (SuSy) synthetic and sucrolytic activities. (2) Sink to source transition (40-47 % FLE): increase in total SPS and SuSy activities, decrease in AI activity. (3) Source (96-97 % FLE): high total SPS activity, increased SuSy activities, decreased AI activity. The hexose/sucrose ratio decreased from sink to source leaves in both bean cultivars. The neutral invertase activity was lower than that of AI; it showed an insignificant decrease during the sink-source transition.  相似文献   

9.
The aim of this study was to investigate carbohydrate metabolism in rice seedlings subjected to salt-alkaline stress. Two relatively salt-alkaline tolerant (Changbai 9) and sensitive (Jinongda 138) rice cultivars, grown hydroponically, were subjected to salt-alkaline stress via 50 mM of salt-alkaline solution. The carbohydrate content and the activities of metabolism-related enzymes in the leaves and roots were investigated. The results showed that the contents of sucrose, fructose, and glucose in the leaves and roots increased under salt-alkaline stress. Starch content increased in the leaves but decreased in the roots under salt-alkaline stress. The activities of sucrose-phosphate synthase, sucrose synthase, amylase, and ADP-glucose pyrophosphorylase increased whereas the activities of neutral invertase and acid invertase decreased in the leaves under salt-alkaline stress. The activities of sucrose-phosphate synthase, sucrose synthase, amylase, neutral invertase, and acid invertase increased in the roots under salt-alkaline stress. In conclusion, salt-alkaline stress caused the accumulation of photosynthetic assimilates in the leaves and decreased assimilation export to the roots.  相似文献   

10.
Huber SC  Hanson KR 《Plant physiology》1992,99(4):1449-1454
We have further characterized the photosynthetic carbohydrate metabolism and growth of a starchless mutant (NS 458) of Nicotiana sylvestris that is deficient in plastid phosphoglucomutase (Hanson KR, McHale NA [1988] Plant Physiol 88: 838-844). In general, the mutant had only slightly lower rates of photosynthesis under ambient conditions than the wild type. However, accumulation of soluble sugars (primarily hexose sugars) in source leaves of the mutant compensated for only about half of the carbon stored as starch in the wild type. Therefore, the export rate was slightly higher in the mutant relative to the wild type. Starch in the wild type and soluble sugars in the mutant were used to support plant growth at night. Growth of the mutant was progressively restricted, relative to wild type, when plants were grown under shortened photoperiods. When grown under short days, leaf expansion of the mutant was greater during the day, but was restricted at night relative to wild-type leaves, which expanded primarily at night. We postulate that restricted growth of the mutant on short days is the result of several factors, including slightly lower net photosynthesis and inability to synthesize starch in both source and sink tissues for use at night. In short-term experiments, increased “sink demand” on a source leaf (by shading all other source leaves) had no immediate effect on starch accumulation during the photoperiod in the wild type or on soluble sugar accumulation in the mutant. These results would be consistent with a transport limitation in N. sylvestris such that not all of the additional carbon flux into sucrose in the mutant can be exported from the leaf. Consequently, the mutant accumulates hexose sugars during the photoperiod, apparently as the result of sucrose hydrolysis within the vacuole by acid invertase.  相似文献   

11.
The most important quality for muskmelon (Cucumis melo L.) is their sweetness which is closely related to the soluble sugars content. Leaves are the main photosynthetic organs in plants and thus the source of sugar accumulation in fruits since sugars are translocated from leaves to fruits. The effects of grafting muskmelon on two different inter-specific (Cucurbita maxima×C. moschata) rootstocks was investigated with respect to photosynthesis and carbohydrate metabolism. Grafting Zhongmi1 muskmelon on RibenStrong (GR) or Shengzhen1 (GS) rootstocks increased chlorophyll a, chlorophyll b and chlorophyll a+b content and the leaf area in middle and late developmental stages of the plant compared to the ungrafted Zhongmi1 check (CK). Grafting enhanced the net photosynthesis rate, the stomatal conductance, concentration of intercellular CO(2) and transpiration rate. Grafting influenced carbohydrates contents by changing carbohydrate metabolic enzymes activities which was observed as an increase in acid invertase and neutral invertase activity in the functional leaves during the early and middle developmental stages compared to CK. Grafting improved sucrose phosphate synthase and stachyose synthase activities in middle and late developmental stages, thus translocation of sugars (such as sucrose, raffinose and stachyose) in GR and GS leaves were significantly enhanced. However, compared with CK, translocation of more sugars in grafted plants did not exert feedback inhibition on photosynthesis. Our results indicate that grafting muskmelon on inter-specific rootstocks enhances photosynthesis and translocation of sugars in muskmelon leaves.  相似文献   

12.
A simple method of growing plants in agar was exploited to investigate the effect of long-term nitrogen (N) and phosphorus (P) deficiencies on respiratory metabolism and growth in shoots and roots of Nicotiana tabacum seedlings, and their interaction with exogenously supplied sucrose. Levels of hexose phosphates and 3-phosphoglyceric acid (3-PGA) were low in P-deficient shoots and roots and high in N-deficient shoots and roots. The ratio of hexose phosphates to 3-PGA and levels of fructose-2,6-bisphosphate were high in P-deficient plants and low in N-deficient plants. These data reflect differences in the way metabolism was perturbed, yet both deficiencies were associated with increased root growth relative to shoot growth, starch accumulation in the shoots, and soluble carbohydrate accumulation, especially hexoses, in the roots. Enzymes for sucrose degradation (sucrose synthase, acid and alkaline invertase) and glycolysis (phosphofructokinase, pyrophosphate-dependent phospho-fructokinase and pyruvate kinase) remained unaltered or declined in the shoots and roots. The accumulation of hexoses in roots of N- and P-deficient plants may result from maintenance of high invertase activities relative to sucrose synthase and glycolytic enzymes in the roots. The possibility that hexose accumulation may drive preferential root growth osmotically in N and P deficiencies is discussed. The addition of sucrose to roots to further investigate the interaction of carbohydrates with growth and allocation in low N and low P produced clear effects even though endogenous levels of soluble carbohydrate were already high in the nutrient-deficient plants. In complete nutrition, growth was stimulated, protein content particularly of the roots was increased and there was a preferential increase in activity of sucrose synthase in roots. At low P, enzyme activities in roots were increased, including sucrose synthase, and protein content increased, particularly in the roots, but there was no increase in growth. In N-deficient plants, exogenous sucrose led to decreased protein, Rubisco and chlorophyll content in shoots, in contrast to the other conditions, and a higher protein content and a general increase of catabolic enzyme activities and growth in the roots.  相似文献   

13.
Vassey TL 《Plant physiology》1989,89(1):347-351
The activity of sucrose phosphate synthase, sucrose synthase, and acid invertase was monitored in 1- to 2-month-old sugar beet (Beta vulgaris L.) leaves. Sugar beet leaves achieve full laminar length in 13 days. Therefore, leaves were harvested at 2-day intervals for 15 days. Sucrose phosphate synthase activity was not detectable for 6 days in the dark-grown leaves. Once activity was measurable, sucrose phosphate synthase activity never exceeded half that observed in the light-grown leaves. After 8 days in the dark, leaves which were illuminated for 30 minutes showed no significant change in sucrose phosphate synthase activity. Leaves illuminated for 24 hours after 8 days in darkness, however, recovered sucrose phosphate synthase activity to 80% of that of normally grown leaves. Sucrose synthase and acid invertase activity in the light-grown leaves both increased for the first 7 days and then decreased as the leaves matured. In contrast, the activity of sucrose synthase oscillated throughout the growth period in the dark-grown leaves. Acid invertase activity in the dark-grown leaves seemed to be the same as the activity found in the light-grown leaves.  相似文献   

14.
通过测定不同发育时期肉苁蓉和寄主梭梭体内主要糖类物质含量和蔗糖代谢相关酶活性,以研究寄生植物与寄主植物的糖代谢及其关系。结果表明:未寄生肉苁蓉的梭梭以积累葡萄糖为主,而寄生肉苁蓉的梭梭在夏季休眠期以积累葡萄糖为主,进入秋季旺盛生长期时以积累蔗糖为主。肉苁蓉的糖分积累与梭梭不同,己糖含量约占可溶性总糖的62.45%,而蔗糖仅为可溶性总糖的4.98%,故肉苁蓉为己糖积累型。寄主梭梭同化枝内蔗糖磷酸合成酶活性较转化酶活性和蔗糖合成酶活性低,其中寄生肉苁蓉的梭梭的分解酶类活性高于未寄生肉苁蓉的梭梭。肉苁蓉体内转化酶活性较低,而蔗糖合成酶和蔗糖磷酸合成酶活性较高,且蔗糖合成酶活性高于蔗糖磷酸合成酶活性,表现为肉苁蓉中的分解酶类活性高于合成酶类活性,较高的分解酶类活性促进了蔗糖的分解,从而促进了糖分由寄主梭梭向肉苁蓉的不断转移。总体来看,肉苁蓉和寄主梭梭体内糖分的代谢主要以蔗糖合成酶为主,其它2种酶为辅协同参与调控。  相似文献   

15.
The organ topography of sucrose synthase and soluble acid invertase in pea seedlings at heterotrophic stage (3–14 days) was studied. Sucrose synthase was most active in the roots, with the highest activity on the 6–8th days. In the leaves, its activity decreased from day 3 to day 14. In the stems, sucrose synthase activity was at an invariantly low level. The patterns of sucrose synthase activity in etiolated and green plants were similar. As distinct from sucrose synthase, invertase activity was the highest in the stem, especially in etiolated plants. The peak of its activity was observed on the 6-8th days. In the leaves, invertase activity was lower but its pattern was the same. In the roots, acid invertase activity decreased from the 3rd day and did not depend on illumination. The conclusion is that differences in sucrose synthase and acid invertase activities in roots, leaves, and stem are determined by differences in the import of hydrolytic products of stored compound from the cotyledons as well as by different demands of these organs for these products for the processes of organ expansion and for the maintenance of organ metabolism.  相似文献   

16.
Cell wall-bound invertase (cw-Inv) plays an important role in carbohydrate partitioning and regulation of sink-source interaction. There is increasing evidence that pathogens interfere with sink-source interaction, and induction of cw-Inv activity has frequently been shown in response to pathogen infection. To investigate the role of cw-Inv, transgenic tomato (Solanum lycopersicum) plants silenced for the major leaf cw-Inv isoforms were generated and analyzed during normal growth and during the compatible interaction with Xanthomonas campestris pv vesicatoria. Under normal growth conditions, activities of sucrolytic enzymes as well as photosynthesis and respiration were unaltered in the transgenic plants compared with wild-type plants. However, starch levels of source leaves were strongly reduced, which was most likely caused by an enhanced sucrose exudation rate. Following X. campestris pv vesicatoria infection, cw-Inv-silenced plants showed an increased sucrose to hexose ratio in the apoplast of leaves. Symptom development, inhibition of photosynthesis, and expression of photosynthetic genes were clearly delayed in transgenic plants compared with wild-type plants. In addition, induction of senescence-associated and pathogenesis-related genes observed in infected wild-type plants was abolished in cw-Inv-silenced tomato lines. These changes were not associated with decreased bacterial growth. In conclusion, cw-Inv restricts carbon export from source leaves and regulates the sucrose to hexose ratio in the apoplast. Furthermore, an increased apoplastic hexose to sucrose ratio can be linked to inhibition of photosynthesis and induction of pathogenesis-related gene expression but does not significantly influence bacterial growth. Indirectly, bacteria may benefit from low invertase activity, since the longevity of host cells is raised and basal defense might be dampened.  相似文献   

17.
The high sucrose phosphate synthase (SPS) capacity and the low soluble acid invertase activity of mature leaves of the first flush of leaves remained stable during second flush development. Conversely, fluctuations of sucrose synthase (SS) activity were in parallel with the sucrose requirement of the second flush. Sucrose synthase activity (synthesis direction) in first flush leaves could increase in 'response' to sink demand constituted by the second flush growth. Only the ptotosynthates provided by flush mature leaves were translocated for a current flush, while the starch content of these leaves remained stable. After their emergence, second flush leaves showed an increase in SPS and SS (Synthetic direction) activities. The high sucrose synthesis in second flush leaves was used for leaf expansion. When young leaves were 30% fully expanded (stage II20), SPS activity showed little change whereas SS activity declined rapidly toward and after full leaf expansion. The starch accumulation in the young leaves occured simultaneously with their expansion. Developing leaves showed a high level of acid invertase activity until maximum leaf expansion (stage II1). In first and second flush leaves, changes in acid invertase activity correlated positively with changes in reducing sugar concentrations. Alkaline invertase and sucrose synthase (cleavage direction) activities showed similar changes with low values when compared with those of acid invertase activity, especially in second flush leaves. The present results suggest that soluble acid invertase was the primary enzyme responsible for sucrose catabolism in the expanding common oak leaf.  相似文献   

18.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

19.
20.
A concept is suggested, which supposes that assimilates are transferred within the plant downward through phloem sieve tubes and, after entering the stem apoplast, are carried up with the ascending flow of transpiration water. After entering the apoplast of fully expanded leaves, these solutes are reexported through the phloem. Thus, a common pool of assimilates with uniform concentration is formed in the plant apoplast. According to this concept, the mechanism of assimilate demand represents a response of photosynthetic apparatus to changes in the apoplastic level of metabolites consumed by sink organs. The ratios of labeled photoassimilates differ between the apoplast and mesophyll cells. Most of the apoplastic labeled carbon is contained in sucrose, less in amino acids, and even less in hexoses. The 14C-labeling of amino acids increases and the sucrose/hexose labeling ratio decreased under conditions of enhanced nitrate supply. The well-known effect of relative inhibition of assimilate export from leaves under conditions of enhanced nitrogen supply is explained by an enhanced hydrolysis of apoplast-derived sucrose due to the increase in invertase activity, rather than by diversion of primary photosynthetic products from sucrose synthesis to other pathways required for activated growth processes in leaves. This notion is based on observations that the sucrose/hexose ratio is reduced to a greater extent in the apoplast than in the symplast. The last assumption was supported by data obtained after artificial changes in the apoplastic pH. In these experiments intact plants were placed in the atmosphere of NH3 or HCl vapors, which induced opposite changes in relative content of labeled assimilates in the apoplast and in the photosynthetic rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号