共查询到20条相似文献,搜索用时 15 毫秒
1.
Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate. 总被引:1,自引:0,他引:1
Fructose-1,6-bis(phosphate) aldolase is an essential glycolytic enzyme found in all vertebrates and higher plants that catalyzes the cleavage of fructose 1,6-bis(phosphate) (Fru-1,6-P(2)) to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). Mutations in the aldolase genes in humans cause hemolytic anemia and hereditary fructose intolerance. The structure of the aldolase-DHAP Schiff base has been determined by X-ray crystallography to 2.6 A resolution (R(cryst) = 0.213, R(free) = 0.249) by trapping the catalytic intermediate with NaBH(4) in the presence of Fru-1,6-P(2). This is the first structure of a trapped covalent intermediate for this essential glycolytic enzyme. The structure allows the elucidation of a comprehensive catalytic mechanism and identification of a conserved chemical motif in Schiff-base aldolases. The position of the bound DHAP relative to Asp33 is consistent with a role for Asp33 in deprotonation of the C4-hydroxyl leading to C-C bond cleavage. The methyl side chain of Ala31 is positioned directly opposite the C3-hydroxyl, sterically favoring the S-configuration of the substrate at this carbon. The "trigger" residue Arg303, which binds the substrate C6-phosphate group, is a ligand to the phosphate group of DHAP. The observed movement of the ligand between substrate and product phosphates may provide a structural link between the substrate cleavage and the conformational change in the C-terminus associated with product release. The position of Glu187 in relation to the DHAP Schiff base is consistent with a role for the residue in protonation of the hydroxyl group of the carbinolamine in the dehydration step, catalyzing Schiff-base formation. The overlay of the aldolase-DHAP structure with that of the covalent enzyme-dihydroxyacetone structure of the mechanistically similar transaldolase and KDPG aldolase allows the identification of a conserved Lys-Glu dyad involved in Schiff-base formation and breakdown. The overlay highlights the fact that Lys146 in aldolase is replaced in transaldolase with Asn35. The substitution in transaldolase stabilizes the enamine intermediate required for the attack of the second aldose substrate, changing the chemistry from aldolase to transaldolase. 相似文献
2.
The crystal structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster at 2.5 A resolution 总被引:5,自引:0,他引:5
G Hester O Brenner-Holzach F A Rossi M Struck-Donatz K H Winterhalter J D Smit K Piontek 《FEBS letters》1991,292(1-2):237-242
The structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster has been determined by X-ray diffraction at 2.5 A resolution. The insect enzyme crystallizes in space group P2(1)2(1)2(1) with lattice replacement with rabbit muscle aldolase as a search model has been employed to solve the structure. To improve the initial phases real space averaging, including phase extension from 4.0 to 2.5 A, has been applied. Refinement of the atomic positions by molecular dynamics resulted in a crystallographic R-factor of 0.214. The tertiary structure resembles in most parts that of the vertebrate aldolase from rabbit muscle. Significant differences were found in surface loops and the N- and C-terminal regions of the protein. Here we present the first aldolase structure where the functionally important C-terminal arm is described completely. 相似文献
3.
Phenotypic suppression of a fructose-1,6-diphosphate aldolase mutation in Escherichia coli 总被引:3,自引:1,他引:2
Strain NP 315 of Escherichia coli possesses a thermolabile fructose-1, 6-diphosphate (FDP) aldolase; its growth on carbohydrate substrates is inhibited probably as a consequence of the accumulation of high intracellular levels of FDP. Studies of one class of phenotypic revertants of strain NP 315 which have regained their ability to grow on C(6) substrates at 40 C showed that in these strains the buildup of the inhibitory FDP pool is prevented by additional mutations in enzymes catalyzing the conversion of the substrate offered in the medium to FDP. For example, mutations affecting 6-phosphogluconate dehydrogenase activity (gnd(-)) may be selected in great number without any mutagenesis and enrichment simply by isolating revertants of strain NP 315 able to grow on gluconate at 40 C. Similarly, an additional mutation in phosphoglucose isomerase (pgi(-)) restores the ability of these fda(-)gnd(-) strains to grow on glucose at 40 C. Glucose metabolism of these fda(-)gnd(-)pgi(-) strains was investigated. The enzymes of the Entner-Doudoroff pathway are induced to an appreciable extent upon growth of these mutants on glucose medium; further evidence for glucose degradation via this route (which normally is induced only in the presence of gluconate) was provided by following the fate of the C1 label of radioactive glucose in l-alanine. Predominant labeling of the carboxyl-carbon of l-alanine was observed, inciating a major contribution of the Entner-Doudoroff path to pyruvate formation from glucose. Chromatographic analysis of the intermediates of glucose metabolism showed further that glucose apparently is at least partly metabolized via a bypass consisting of the accumulation of extracellular gluconic acid which arises by dephosphorylation of 6-phosphogluconolactone and possibly of 6-phosphogluconate. This extracellular gluconate is then taken up and metabolized in the normal manner via the Entner-Doudoroff enzymes. 相似文献
4.
Structure refinement of fructose-1,6-bisphosphatase and its fructose 2,6-bisphosphate complex at 2.8 A resolution 总被引:7,自引:0,他引:7
H M Ke C M Thorpe B a Seaton W N Lipscomb F Marcus 《Journal of molecular biology》1990,212(3):513-539
The structures of the native fructose-1,6-bisphosphatase (Fru-1,6-Pase), from pig kidney cortex, and its fructose 2,6-bisphosphate (Fru-2,6-P2) complexes have been refined to 2.8 A resolution to R-factors of 0.194 and 0.188, respectively. The root-mean-square deviations from the standard geometry are 0.021 A and 0.016 A for the bond length, and 4.4 degrees and 3.8 degrees for the bond angle. Four sites for Fru-2,6-P2 binding per tetramer have been identified by difference Fourier techniques. The Fru-2,6-P2 site has the shape of an oval cave about 10 A deep, and with other dimensions about 18 A by 12 A. The two Fru-2,6-P2 binding caves of the dimer in the crystallographically asymmetric unit sit next to one another and open in opposite directions. These two binding sites mutually exchange their Arg243 side-chains, indicating the potential for communication between the two sites. The beta, D-fructose 2,6-bisphosphate has been built into the density and refined well. The oxygen atoms of the 6-phosphate group of Fru-2,6-P2 interact with Arg243 from the adjacent monomer and the residues of Lys274, Asn212, Tyr264, Tyr215 and Tyr244 in the same monomer. The sugar ring primarily contacts with the backbone atoms from Gly246 to Met248, as well as the side-chain atoms, Asp121, Glu280 and Lys274. The 2-phosphate group interacts with the side-chain atoms of Ser124 and Lys274. A negatively charged pocket near the 2-phosphate group includes Asp118, Asp121 and Glu280, as well as Glu97 and Glu98. The 2-phosphate group showed a disordered binding perhaps because of the disturbance from the negatively charged pocket. In addition, Asn125 and Lys269 are located within a 5 A radius of Fru-2,6-P2. We argue that Fru-2,6-P2 binds to the active site of the enzyme on the basis of the following observations: (1) the structure similarity between Fru-2,6-P2 and the substrate; (2) sequence conservation of the residues directly interacting with Fru-2,6-P2 or located at the negatively charged pocket; (3) a divalent metal site next to the 2-phosphate group of Fru-2,6-P2; and (4) identification of some active site residues in our structure, e.g. tyrosine and Lys274, consistent with the results of the ultraviolet spectra and the chemical modification. The structures are described in detail including interactions of interchain surfaces, and the chemically modifiable residues are discussed on the basis of the refined structures.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
5.
Arakaki TL Pezza JA Cronin MA Hopkins CE Zimmer DB Tolan DR Allen KN 《Protein science : a publication of the Protein Society》2004,13(12):3077-3084
Fructose-1,6-(bis)phosphate aldolase is a ubiquitous enzyme that catalyzes the reversible aldol cleavage of fructose-1,6-(bis)phosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceral-dehyde-3-phosphate or glyceraldehyde, respectively. Vertebrate aldolases exist as three isozymes with different tissue distributions and kinetics: aldolase A (muscle and red blood cell), aldolase B (liver, kidney, and small intestine), and aldolase C (brain and neuronal tissue). The structures of human aldolases A and B are known and herein we report the first structure of the human aldolase C, solved by X-ray crystallography at 3.0 A resolution. Structural differences between the isozymes were expected to account for isozyme-specific activity. However, the structures of isozymes A, B, and C are the same in their overall fold and active site structure. The subtle changes observed in active site residues Arg42, Lys146, and Arg303 are insufficient to completely account for the tissue-specific isozymic differences. Consequently, the structural analysis has been extended to the isozyme-specific residues (ISRs), those residues conserved among paralogs. A complete analysis of the ISRs in the context of this structure demonstrates that in several cases an amino acid residue that is conserved among aldolase C orthologs prevents an interaction that occurs in paralogs. In addition, the structure confirms the clustering of ISRs into discrete patches on the surface and reveals the existence in aldolase C of a patch of electronegative residues localized near the C terminus. Together, these structural changes highlight the differences required for the tissue and kinetic specificity among aldolase isozymes. 相似文献
6.
7.
A new gene involved in expression of fructose-1,6-diphosphate aldolase activity in Escherichia coli.
A new gene, fdaB, has been mapped by transduction and partial diploid analyses and located adjacent to argA at 59.9 min on the Escherichia coli recalibrated linkage map. This gene is involved in expression of fructose-1,6-diphosphate aldolase activity and indirectly in ribosomal RNA synthesis. The temperature-sensitive mutant strain AA-157, containing the defective gene product of of fdaB, accumulates high concentrations of fructose 1,6-diphosphate at the nonpermissive temperature. 相似文献
8.
Cytosolic fructose-1,6-P(2) (FBP) aldolase (ALD(c)) from germinated mung beans has been purified 1078-fold to electrophoretic homogeneity and a final specific activity of 15.1 micromol FBP cleaved/min per mg of protein. SDS-PAGE of the final preparation revealed a single protein-staining band of 40 kDa that cross-reacted strongly with rabbit anti-(carrot ALD(c))-IgG. The enzyme's native M(r) was determined by gel filtration chromatography to be 160 kDa, indicating a homotetrameric quaternary structure. This ALD is a class I ALD, since EDTA or Mg(2+) had no effect on its activity, and was relatively heat-stable losing 0-25% of its activity when incubated for 5 min at 55-65 degrees C. It demonstrated: (i) a temperature coefficient (Q(10)) of 1.7; (ii) an activation energy of 9.2 kcal/mol active site; and (iii) a broad pH-activity optima of 7.5. Mung bean ALD(c) is bifunctional for FBP and sedoheptulose-1,7-P(2) (K(m) approximately 17 microM for both substrates). ATP, ADP, AMP and ribose-5-P exerted inhibitory effects on the activity of the purified enzyme. Ribose-5-P, ADP and AMP functioned as competitive inhibitors (K(i) values=2.2, 3.1 and 7.5mM, respectively). By contrast, the addition of 2mM ATP: (i) reduced V(max) by about 2-fold, (ii) increased K(m)(FBP) by about 4-fold, and (iii) shifted the FBP saturation kinetic plot from hyperbolic to sigmoidal (h=1.0 and 2.6 in the absence and presence of 2mM ATP, respectively). Potent feedback inhibition of ALD(c) by ATP is suggested to help balance cellular ATP demands with the control of cytosolic glycolysis and respiration in germinating mung beans. 相似文献
9.
Bajić A Zakrzewska J Godjevac D Andjus P Jones DR Spasić M Spasojević I 《Carbohydrate research》2011,(3):2255-420
The cytoprotective activity of F16BP has been documented in severe conditions such as convulsions, reperfusion injury, septic shock, diabetic complications, hypothermia-induced injury, UV-provoked skin damage and in other processes including apoptosis and excitotoxicity. F16BP shows very efficient cytoprotective activity in astroglial cells exposed to H2O2-provoked oxidative stress and during neuronal injury caused by hypoxic conditions. As most of the aforementioned processes involve iron activity-related conditions, we investigated the ferric and ferrous iron binding properties of F16BP under physiological conditions using 31P NMR and EPR spectroscopy. Our results indicate that cytoprotective F16BP activity is predominantly based on ferrous iron sequestration. 31P NMR spectroscopy of F16BP employing paramagnetic properties of iron clearly showed that F16BP forms stabile complexes with Fe2+ which was verified by EPR of another divalent cation—Mn2+. On the other hand, F16BP does not sequester ferric iron nor does it increase its redox activity as shown by 31P NMR and EPR spin-trapping. Therefore, F16BP may be beneficial in neurodegenerative and other conditions that are characterised by ferric iron stores and deposits. 相似文献
10.
In recent years, the actin cytoskeleton in Schizosaccharomyces pombe has become the subject of intense scrutiny. However, to date, only a single actin mutation has been identified. Described here is the isolation and characterization of four new cold-sensitive actin mutations. Sequence analysis of the mutant actin genes indicated that each of these mutations caused alterations in single amino acids that are conserved in all actin sequences. These mutants differ in their phenotypes. One of these mutations (act1-48) was identified as an extragenic suppressor of a mutation in the cdc4 gene, which is required for actin ring formation and cytokinesis. Interestingly, when act1-48 mutant cells were shifted to the restrictive temperature, actin patches were not detected but the actin ring formation and stability was unaffected. The three other mutations, act1-16, act1-32 and act1-67, primarily affected the actin ring formation or stability while F-actin patches did not seem to be substantially different in appearance. Given that the ultrastructural architectures of F-actin patches and the F-actin ring are presently unclear, these mutations, which affect one structure or the other, should be useful for future studies on the role of actin itself in the function of these F-actin-containing structures in S. pombe. 相似文献
11.
Phosphorylation in vivo of yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase at the cyclic AMP-dependent site 总被引:4,自引:0,他引:4
In vivo labeled fructose-1,6-bisphosphatase was immunopurified from yeast (Saccharomyces cerevisiae) cells that had been incubated in the presence of [32P] orthophosphate. Tryptic peptides from labeled enzyme were mapped by high performance liquid chromatography. Most of the radioactivity was found to be associated with the peptide Arg9 through Arg24, the same peptide which had been previously shown to be phosphorylated in vitro by cAMP-dependent protein kinase (Rittenhouse, J., Harrsch, P. B., Kim, J. N., and Marcus, F. (1986) J. Biol. Chem. 261, 3939-3943). The amino acid sequence analysis suggests that phosphorylation occurs at the same site, Ser11. We have also determined the extent of phosphorylation at Ser11 of fructose-1,6-bisphosphatase in yeast cultures growing under various nutritional conditions by measuring the relative amounts of phospho- and corresponding dephosphopeptides in tryptic digests. Significant levels of phosphorylation of the enzyme were found in yeast cultures grown under gluconeogenic conditions that varied from 0.15 to 0.50 mol of phosphate per mol of enzyme subunit. However, phosphate incorporation rapidly increased to greater than 0.8 mol after addition of glucose to these cultures. An alternative technique, based solely on enzyme activity measurements, was also developed to estimate the extent of fructose-1,6-bisphosphatase phosphorylation in yeast cultures. The results obtained with this technique agreed with those obtained by high performance liquid chromatography of tryptic peptides. 相似文献
12.
Class II fructose 1,6-bisphosphate aldolases (FBP-aldolases) catalyse the zinc-dependent, reversible aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP). Analysis of the structure of the enzyme from Escherichia coli in complex with a transition state analogue (phosphoglycolohydroxamate, PGH) suggested that substrate binding caused a conformational change in the beta5-alpha7 loop of the enzyme and that this caused the relocation of two glutamate residues (Glu181 and Glu182) into the proximity of the active site. Site-directed mutagenesis of these two glutamate residues (E181A and E182A) along with another active site glutamate (Glu174) was carried out and the mutant enzymes characterised using steady-state kinetics. Mutation of Glu174 (E174A) resulted in an enzyme which was severely crippled in catalysis, in agreement with its position as a zinc ligand in the enzyme's structure. The E181A mutant showed the same properties as the wild-type enzyme indicating that the residue played no major role in substrate binding or enzyme catalysis. In contrast, mutation of Glu182 (E182A) demonstrated that Glu182 is important in the catalytic cycle of the enzyme. Furthermore, the measurement of deuterium kinetic isotope effects using [1(S)-(2)H]DHAP showed that, for the wild-type enzyme, proton abstraction was not the rate determining step, whereas in the case of the E182A mutant this step had become rate limiting, providing evidence for the role of Glu182 in abstraction of the C1 proton from DHAP in the condensation direction of the reaction. Glu182 lies in a loop of polypeptide which contains four glycine residues (Gly176, Gly179, Gly180 and Gly184) and a quadruple mutant (where each glycine was converted to alanine) showed that flexibility of this loop was important for the correct functioning of the enzyme, probably to change the microenvironment of Glu182 in order to perturb its pK(a) to a value suitable for its role in proton abstraction. These results highlight the need for further studies of the dynamics of the enzyme in order to fully understand the complexities of loop closure and catalysis in this enzyme. 相似文献
13.
Structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3 A resolution: evidence for multiple substrate binding modes 总被引:2,自引:0,他引:2
Wester MR Johnson EF Marques-Soares C Dansette PM Mansuy D Stout CD 《Biochemistry》2003,42(21):6370-6379
The structure of rabbit microsomal cytochrome P450 2C5/3LVdH complexed with a substrate, 4-methyl-N-methyl-N-(2-phenyl-2H-pyrazol-3-yl)benzenesulfonamide (DMZ), was determined by X-ray crystallography to 2.3 A resolution. Substrate docking studies and electron density maps indicate that DMZ binds to the enzyme in two antiparallel orientations of the long axis of the substrate. One orientation places the principal site of hydroxylation, the 4-methyl group, 4.4 A from the heme Fe, whereas the alternate conformation positions the second, infrequent site of hydroxylation at >5.9 A from the heme Fe. Comparison of this structure to that obtained previously for the enzyme indicates that the protein closes around the substrate and prevents open access of water from bulk solvent to the heme Fe. This reflects a approximately 1.5 A movement of the F and G helices relative to helix I. The present structure provides a complete model for the protein from residues 27-488 and defines two new helices F' and G'. The G' helix is likely to contribute to interactions of the enzyme with membranes. The relatively large active site, as compared to the volume occupied by the substrate, and the flexibility of the enzyme are likely to underlie the capacity of drug-metabolizing enzymes to metabolize structurally diverse substrates of different sizes. 相似文献
14.
15.
16.
Structure of molecular aggregates of 1-(3-sn-phosphatidyl)-L-myo-inositol 3,4-bis(phosphate) in water 总被引:1,自引:0,他引:1
Y Sugiura 《Biochimica et biophysica acta》1981,641(1):148-159
The molecular organization of 1-(3-sn-phosphatidyl)-L-myo-inositol 3,4-bis-(phosphate)/water systems is investigated over a wide range of lipid concentrations using X-ray diffraction, calorimetry, analytical ultracentrifugation, densitometry and viscometry. At high lipid concentrations, the lipid molecules are found to form a lamellar phase. The repeat distance increases from 60 to 120 A with increasing water content to 70 wt% and the surface area per lipid molecule increases from 41.7 A2 to a limiting value of 100 A2. On the other hand, at very low lipid concentrations the molecules are found to form not vesicles but micelles, the total molecular weight of which takes a value of 93,000. This finding revises the prevalent view that lipids containing two (or more) hydrocarbon chains form extended bilayers or vesicles, whereas single chained lipids form micelles. 相似文献
17.
Affinity labeling of rabbit muscle fructose-1,6-bisphosphate aldolase with 5'-[p-(fluorosulfonyl)benzoyl]-1,N6-ethenoadenosine 总被引:1,自引:0,他引:1
Aldolase contains one tight binding site and one weak binding site per subunit for ATP [Kasprzak, A. and Kochman, M. (1980) Eur. J. Biochem. 104, 443-450]. The reaction of the ATP analog 5'-[p-(fluorosulfonyl)benzoyl]-1,N6-ethenoadenosine with rabbit aldolase A results in linear inactivation of enzyme with respect to covalent linkage of fluorescent label. The enzyme is completely protected against modification in the presence of saturating covalent binding (k2 = 0.033 min-1) is preceded by a fast reversible binding step (Ki = 6.8 mM). Chemical modification of aldolase leads to formation of stable N epsilon (4-carboxybenzenesulfonyl-lysine (Cbs-Lys) and O-(4-carboxybenzenesulfonyl-tyrosine (Cbs-Tyr) derivatives. Almost all Cbs-Lys was found in the N-terminal CNBr peptide (CN-1), whereas Cbs-Tyr was present both in the N-terminal (CN-1) and C-terminal (CN-2) peptide. From carboxypeptidase digestion and tryptic peptide analysis, Cbs-Lys was localized in position 107, a small part of Cbs-Tyr was detected in position 84, and the majority of Cbs-Tyr was found in the C-terminal position Tyr-363. We conclude that the covalent binding of the ATP analog occurs at the mononucleotide tight-binding site of aldolase and is associated with modification of Lys-107 and Tyr-363. This conclusion is based on the measurements of enzymatic activity loss as a function of ATP analog incorporation as well as on previous data. It is postulated that Lys-107, which is the C-6 phosphate binding site for fructose-1,6-P2, is in close proximity to the functionally important Tyr-363. The rather small extent of modification of Tyr-84 (0.15 mol/subunit), is due either to nonspecific protein modification or labeling of the weak mononucleotide binding site. 相似文献
18.
Ding Li Tuong Thi Mai Luong Wen-Jia Dan Yanliang Ren Hoang Xuan Nien An-Ling Zhang Jin-Ming Gao 《Bioorganic & medicinal chemistry》2018,26(2):386-393
Several recently identified antifungal compounds share the backbone structure of acetophenones. The aim of the present study was to develop new isobutyrophenone analogs as new antifungal agents. A series of new 2,4-dihydroxy-5-methyl isobutyrophenone derivatives were prepared and characterized by 1H, 13C NMR and MS spectroscopic data. These products were evaluated for in vitro antifungal activities against seven plant fungal pathogens by the mycelial growth inhibitory rate assay. Compounds 3, 4a, 5a, 5b, 5e, 5f and 5g showed a broad-spectrum high antifungal activity. On the other hand, for the first time, these compounds were also assayed as potential inhibitors against Class II fructose-1,6-bisphosphate aldolase (Fba) from the rice blast fungus, Magnaporthe grisea. Compounds 5e and 5g were found to exhibit the inhibition constants (Ki) for 15.12 and 14.27?μM, respectively, as the strongest competitive inhibitors against Fba activity. The possible binding-modes of compounds 5e and 5g were further analyzed by molecular docking algorithms. The results strongly suggested that compound 5g could be a promising lead for the discovery of new fungicides via targeting Class II Fba. 相似文献
19.
20.
K N Ekdahl 《Journal of biochemistry》1992,112(5):719-723
Rat liver fructose-1,6-bisphosphatase was phosphorylated by cAMP-dependent protein kinase to 2.6 mol phosphate/mol subunit but not by Ca2+/phospholipid-dependent and Ca2+/calmodulin-dependent protein kinases. It was demonstrated that phosphorylation of Ser-341 and Ser-356, and to a much lower extent, Ser-338, was dependent on the presence of intact arginine residues. This observation implicates that the intact three-dimensional structure of the substrate is necessary for phosphorylation of Ser-356 since the closest arginine is located at a six amino acid residue distance. 相似文献