首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of transfer from low to high ligh intensity on membrane bound electrontransport reactions of Rhodospirillum rubrum were investigated. The experiments were performed with cultures which did not form bacteriochlorophyll (Bchl) for about two cell mass doublings during the initial phase of adaptation to high light intensity. Lack of Bchl synthesis causes a decrease of Bchl contents of cells and membranes. Also, the cellular amounts of photosynthetically active intracytoplasmic membranes decrease.In crude membrane fractions containing both cytoplasmic and intracytoplasmic membranes the initial activities of NADH oxidizing reactions increase only slightly (about 1.2 times) per protein, but the initial activities of succinate oxidizing reactions decrease (multiplied by a factor of 0.7). On a Bchl basis activities of NADH oxidizing reactions increase 3.4 times while activities of succinate dependent reactions increase 1.9 times. With isolated intracytoplasmic membranes activities of NADH as well as succinate dependent reactions increase to a comparable extent on a Bchl basis (about 1.8 times) and stay nearly constant on a protein basis. Cytochrome c oxidase responds like succinate dependent reactions. The data indicate that in cells growing under the conditions applied NADH oxidizing electron transport systems are incorporated into both, cytoplasmic and intracytoplasmic membranes, while incorporation of succinate oxidizing systems is confined to intracytoplasmic membranes only.Activities of photophosphorylation and succinate dependent NAD+ reduction in the light increase per Bchl about 1.8 times. On a Bchl basis increases of the fast light induced on reactions at 422 nm and increases of soluble cytochrome c 2 levels are comparable to increases of photophosphorylations and succinate dependent activities. But increases of slow light off reactions at 428 nm and of b-type cytochrome levels become three times greater then increases of cytochrome c 2 reactions and levels. These results infer that although electrontransport reactions of intracytoplasmic membranes change correlated to each other, Bchl, cytochrome c 2 and b-type cytochromes cellular levels are independent of each other. Furthermore, the data indicate that cytochrome c 2 rather than b-type cytochrome is involved with steps rate limiting for photophosphorylation.Abbreviations Bchl bacteriochlorophyll - DCIP 2,6-dichlorophenolindophenol  相似文献   

2.
Subfractionation of preparations of rat liver microsomes with a suitable concentration of sodium deoxycholate has resulted in the isolation of a membrane fraction consisting of smooth surfaced vesicles virtually free of ribonucleoprotein particles. The membrane fraction is rich in phospholipids, and contains the microsomal NADH-cytochrome c reductase, NADH diaphorase, glucose-6-phosphatase, and ATPase in a concentrated form. The NADPH-cytochrome c reductase, a NADPH (or pyridine nucleotide unspecific) diaphorase, and cytochrome b5 are recovered in the clear supernatant fraction. The ribonucleoprotein particles are devoid of, or relatively poor in, the enzyme activities mentioned. Those enzymes which are bound to the membranes vary in activity according to the structural state of the microsomes, whereas those which appear in the soluble fraction are stable. From these findings the conclusion is reached that certain enzymes of the endoplasmic reticulum are tightly bound to the membranes, whereas others either are loosely bound or are present in a soluble form within the lumina of the system. Some implications of these results as to the enzymic organization of the endoplasmic reticulum are discussed.  相似文献   

3.
Four cytochromes were isolated from soluble extracts of the aerobic sulfur bacterium, Thiobacillus neapolitanus. The two most abundant proteins were purified to homogeneity and thoroughly characterized. Cytochrome c-554 (547) is a monomeric, small molecular weight protein which is unusual in having two well-resolved alpha peaks in UV-visible absorption spectra. The redox potential is 208 mV. Native cytochrome c-549 is oligometric, but has a subunit size of about 26.000. The yield of this protein could be improved dramatically by washing membranes with 30% ammonium sulfate, but the material solubilized by this method had a larger native molecular weight than that in the initial 0.1 M Tris-Cl extract and behaved differently on chromatography. The properties of cytochrome c-549 including subunit size and UV-visible absorption spectra are similar to mitochondrial cytochrome c 1 and chloroplast cytochrome f, which suggests that it may be a modified form of the predominant membrane cytochrome. Based on cytochrome content, it is suggested that T. neapolitanus is not closely related to other thiobacilli.Dedicated to Prof. Dr. G. Drews on the occasion of his sixtieth birthday  相似文献   

4.
Recent evidence has indicated the presence of novel plastoquinone-binding sites, QC and QD, in photosystem II (PSII). Here, we investigated the potential involvement of loosely bound plastosemiquinones in superoxide anion radical (O2•−) formation in spinach PSII membranes using electron paramagnetic resonance (EPR) spin-trapping spectroscopy. Illumination of PSII membranes in the presence of the spin trap EMPO (5-(ethoxycarbonyl)-5-methyl-1-pyrroline N-oxide) resulted in the formation of O2•−, which was monitored by the appearance of EMPO-OOH adduct EPR signal. Addition of exogenous short-chain plastoquinone to PSII membranes markedly enhanced the EMPO-OOH adduct EPR signal. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, the EMPO-OOH adduct EPR signal was suppressed by 50% when the urea-type herbicide DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) was bound at the QB site. However, the EMPO-OOH adduct EPR signal was enhanced by binding of the phenolic-type herbicide dinoseb (2,4-dinitro-6-sec-butylphenol) at the QD site. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, DCMU and dinoseb inhibited photoreduction of the high-potential form of cytochrome b559 (cyt b559). Based on these results, we propose that O2•− is formed via the reduction of molecular oxygen by plastosemiquinones formed through one-electron reduction of plastoquinone at the QB site and one-electron oxidation of plastoquinol by cyt b559 at the QC site. On the contrary, the involvement of a plastosemiquinone formed via the one-electron oxidation of plastoquinol by cyt b559 at the QD site seems to be ambiguous. In spite of the fact that the existence of QC and QD sites is not generally accepted yet, the present study provided more spectroscopic data on the potential functional role of these new plastoquinone-binding sites.  相似文献   

5.
High rates of both cyclic and noncyclic photophosphorylation were measured in chloroplast lamellae isolated from purified guard cell protoplasts from Vicia faba L. Typical rates of light-dependent incorporation of 32P into ATP were 100 and 190 micromoles ATP per milligram chlorophyll per hour for noncyclic (water to ferricyanide) and cyclic (phenazine methosulfate) photophosphorylation, respectively. These rates were 50 to 80% of those observed with mesophyll chloroplasts. Noncyclic photophosphorylation in guard cell chloroplasts was completely inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea supporting the notion that photophosphorylation is coupled to linear electron flow from photosystem II to photosystem I. Several lines of evidence indicated that contamination by mesophyll chloroplasts cannot account for the observed photophosphorylation rates.

A comparison of the photon fluence dependence of noncyclic photophosphorylation in mesophyll and guard cell chloroplasts showed significant differences between the two preparations, with half saturation at 0.04 and 0.08 millimole per square meter per second, respectively.

  相似文献   

6.
Three c-type cytochromes isolated from Nitrobacter agilis were purified to apparent homogeneity: cytochrome c-553, cytochrome c-550 and cytochrome c-549, 554. Their amino acid composition and other properties were studied. Cytochrome c-553 was isolated as a partially reduced form and could not be oxidized by ferricyanide. The completely reduced form of the cytochrome had absorption maxima at 419, 524 and 553 nm. It had a molecular weight of 25 000 and dissociated into two polypeptides of equal size of 11 500 during SDS gel electrophoresis. The isoelectric point of cytochrome c-553 was pH 6.8. The ferricytochrome c-550 exhibited an absorption peak at 410 nm and the ferrocytochrome c showed peaks at 416, 521 and 550 nm. The molecular weight of the cytochrome estimated by gel filtration and by SDS gel electrophoresis was 12 500. It had an Em(7) value of 0.27 V and isoelectric point pH 8.51. The N-terminal sequence of cytochrome c-550 showed a clear homology with the corresponding portions of the sequences of other c-type cytochromes. Cytochrome c-549, 554 possessed atypical absorption spectra with absorption peaks at 402 nm as oxidized form and at 419, 523, 549 and 554 nm when reduced with Na2S2O4. Its molecular weight estimated by gel filtration and SDS polyacrylamide gel electrophoresis was 90 000 and 46 000, respectively. The cytochrome had an isoelectric point of pH 5.6. Cytochrome c-549, 554 was highly autoxidizable.  相似文献   

7.
By measuring 18O exchange from doubly labeled CO2 (13C18O18O), intracellular carbonic anhydrase activity was studied with protoplasts and chloroplasts isolated from Chlamydomonas reinhardtii grown either on air (low inorganic carbon [Ci]) or air enriched with 5% CO2 (high Ci). Intact low Ci protoplasts had a 10-fold higher carbonic anhydrase activity than did high Ci protoplasts. Application of dextran-bound inhibitor and quaternary ammonium sulfanilamide, both known as membrane impermeable inhibitors of carbonic anhydrase, had no influence on the catalysis of 18O exchange, indicating that cross-contamination with extracellular carbonic anhydrase was not responsible for the observed activity. This intracellular in vivo activity from protoplasts was inhibited by acetazolamide and ethoxyzolamide. Intracellular carbonic anhydrase activity was partly associated with intact chloroplasts isolated from high and low Ci cells, and the latter had a sixfold greater rate of catalysis. The presence of dextran-bound inhibitor had no effect on chloroplast-associated carbonic anhydrase, whereas 150 micromolar ethoxyzolamide caused a 61 to 67% inhibition of activity. These results indicate that chloroplastic carbonic anhydrase was located within the plastid and that it was relatively insensitive to ethoxyzolamide. Carbonic anhydrase activity in crude homogenates of protoplasts and chloroplasts was about six times higher in the low Ci than in high Ci preparations. Further separation into soluble and insoluble fractions together with inhibitor studies revealed that there are at least two different forms of intracellular carbonic anhydrase. One enzyme, which was rather insoluble and relatively insensitive to ethoxyzolamide, is likely an intrachloroplastic carbonic anhydrase. The second carbonic anhydrase, which was soluble and sensitive to ethoxyzolamide, is most probably located in an extrachloroplastic compartment.  相似文献   

8.
Stable and well coupled Photosystem (PS) I-enriched vesicles, mainly derived from the chloroplast stroma lamellae, have been obtained by mild digitonin treatment of spinach chloroplasts. Optimal conditions for chloroplast solubilization are established at a digitonin/chlorophyll ratio of 1 (ww) and a chlorophyll concentration of 0.2 mM, resulting in little loss of native components. In particular, plastocyanin is easily released at higher digitonin/chlorophyll ratios. On the basis of chlorophyll content, the vesicles show a 2-fold enrichment in ATPase, chlorophyll-protein Complex I, P-700, plastocyanin and ribulose-1,5-bisphosphate carboxylase as compared to chloroplasts, in line with the increased activities of cyclic photophosphorylation and PS I-associated electron transfer as shown previously (Peters, A.L.J., Dokter, P., Kooij, T. and Kraayenhof, R. (1981) in Photosynthesis I (Akoyunoglou, G., ed.), pp. 691–700, Balaban International Science Services, Philadelphia). The vesicles have a low content of the light-harvesting chlorophyll-protein complex and show no PS II-associated electron transfer. Characterization of cytochromes in PS I-enriched vesicles and chloroplasts at 25°C and 77 K is performed using an analytical method combining potentiometric analysis and spectrum deconvolution. In PS I-enriched vesicles three cytochromes are distinguished: c-554 (E0 = 335 mV), b-559LP (E0 = 32 mV) and b-563 (E0 = ? 123 mV); no b-559HP is present (LP, low-potential; HP, high-potential). Comparative data from PS I vesicles and chloroplasts are consistent with an even distribution of the cytochrome b-563- cytochrome c-554 redox complex in the lateral plane of exposed and appressed thylakoid membranes, an exclusive location of plastocyanin in the exposed membranes and a dominant location of plastoquinone in the appressed membranes. The results are discussed in view of the lateral heterogeneity of redox components in chloroplast membranes.  相似文献   

9.
Cytochrome b559 in various Photosystem II preparations was studled by using low temperature ESR spectroscopy. This technique was used because it is able to distinguish high from low potential forms of the cytochrome owing to the g-value differences between these species. Moreover, by using low temperature irradiation to oxidize cyt b559 we have avoided the use of redox mediators. Previous work (Ghanotakis DF., Topper J.N. and Yocum, C.F. (1984) Biochim. Biophys. Acta 767, 524–531) demonstrated that reduction and extraction of manganese of the oxygen evolving complex, which might be expected to alter the redox properties of cyt b559, occurs when certain PSII preparations are exposed to reductants. The ESR data presented here show that a mixture of high potential and lower potential cyt b559 species is observed in the oxygen evolving Photosystem II complex. Treatment of PSII membranes with 0.8 M Tris converts the high potential form(s) to those of lower potential. Exposure of the membranes to 2M NaCl shifts a significant amount of high potential cyt b559 to lower potential form(s); addition of CaCl2 reconstituted oxygen evolution activity but did not restore cyt b559 to its high potential form(s).Abbreviations Chl chlorophyll - cyt cytochrome - DCBQ 2,5-dichloro-benzoquinone - DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone - ESR electron spin resonance - OEC oxygen evolving complex - PS photosystem Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement  相似文献   

10.
Tatsuo Omata  Norio Murata 《BBA》1984,766(2):395-402
The cytochrome and prenylquinone compositions were compared for cytoplasmic membranes and thylakoid membranes from the cyanobacterium (blue-green alga) Anacystis nidulans. Reduced-minus-oxidized difference absorption spectra at ?196°C indicated that the thylakoid membranes contained photosynthetic cytochromes such as cytochrome ?, cytochrome b-559 and cytochrome b6, while cytochromes c-549 and c-552 were detected spectrophotometrically only after their release by sonic oscillation. The cytoplasmic membrane preparation contained one or two low-potential cytochrome(s) with α-band maxima at 553 and 559 nm at ?196°C, which differed from the cytochromes in the thylakoid membranes. A cytochrome specific to the cytoplasmic membranes was also found by heme-staining after lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Both types of membranes contained the three prenylquinones plastoquinone-9, phylloquinone and 5′-monohydroxyphylloquinone, but in different proportions.  相似文献   

11.
The precursor of cytochrome b2 (a cytoplasmically-synthesized mitochondrial protein) binds to isolated mitochondria or to isolated outer membrane vesicles. Binding does not require an energized inner membrane, is diminished by trypsin treatment of the membranes and is not observed with the partially processed (intermediate) form of the cytochrome b2 precursor or with non-mitochondrial proteins. Upon energization of the mitochondria, the bound precursor is imported and cleaved to the mature form. Similar results were obtained with the precursor of citrate synthase. This receptor-like binding activity was present in isolated outer, but not inner membrane. It was solubilized from outer membrane with non-ionic detergent and reconstituted into liposomes.  相似文献   

12.
Isolated Euglena chloroplasts retain up to 50% of cytochrome 552 on a chlorophyll basis compared to the content of cells. Cytochrome 563 is found in equal amount in chloroplasts and cells. The amount of cytochrome 552 retained depends on the isolation procedure of chloroplasts.Cytochrome 552 can be further liberated from chloroplasts by mechanical treatment or incubation with detergent. It is concluded that cytochrome 552 is not tightly bound in the membrane but rather trapped in the thylakoids of the chloroplasts.In photosynthetic electron flow, cytochrome 552 is functioning as donor for photosystem I, mediating electron flow from cytochrome 558 to P700 under our conditions.Antimycin A stimulates the photooxidation of cytochrome 552 and of cytochrome 558.The rates of electron flow from water to NADP+ and of cyclic photophosphorylation mediated by phenazine methosulfate correlate with the content of endogenous cytochrome 552 in the chloroplasts. External readdition of cytochrome 552 to deficient chloroplasts causes reconstitution of NADP+ reduction but not of cyclic photophosphorylation. Mechanical treatment or other means of fragmentation of chloroplasts results in the exposure of originally buried reaction sites for external cytochrome 552.  相似文献   

13.
We have assayed absorbance changes generated by blue light in plasma membranes, endoplasmic reticulum, and mitochondrial membranes from Neurospora crassa. Light minus dark difference spectra, obtained anaerobically in the presence of ethylenediaminetetraacetate, indicated that b-type cytochromes could be photoreduced in all three membranes. In plasma membranes, a b-type cytochrome with a distinct difference spectrum was photoreducible without addition of exogenous flavin. Addition of riboflavin greatly stimulated the photoreduction of cytochromes in endoplasmic reticulum and mitochondrial membranes. In its spectral characteristics the cytochrome on the endoplasmic reticulum resembled cytochrome b5 or nitrate reductase, while the cytochrome in mitochondrial membranes had the same spectrum as cytochrome b of the mitochondrial respiratory chain.

Cytochromes in the three membrane fractions reacted differently to blue light in the presence of various inhibitors. Potassium azide inhibited reduction of plasma membrane cytochrome b, with 50% inhibition at 1.0 millimolar. The same concentration of azide stimulated photoreduction of cytochromes in both endoplasmic reticulum and mitochondria. Although photoreduction of cytochromes in all three membranes was inhibited by salicylhydroxamic acid, cytochromes in plasma membranes were more sensitive to this inhibitor than those in endoplasmic reticulum and mitochondria. Cells grown to induce nitrate reductase activity showed an elevated amount of blue light-reducible cytochrome b in the endoplasmic reticulum.

  相似文献   

14.
Dibromo- and diiodo-naphthoquinones are shown to be inhibitors of the cytochrome b6/f complex in isolated thylakoid membranes from spinach chloroplasts. Dibromo-naphthoquinone inhibits ferredoxin catalyzed cyclic photophosphorylation at 0.1 μM concentrations, but non cyclic e-flow only at 10 μM. It does not inhibit cyclic systems with artifical cofactors, nor non-cyclic electron flow from duroquinol through photosystem I via the cytochrome b6/f complex. Dibromo-naphthoquinone does however, lower the stoichiometry for ATP formation in the duroquinol donor system. This inhibitory pattern is quite different from that of DBMIB, but very similar to that of antimycin. This antimycin-like behaviour of these inhibitors is interpreted to indicate a) the existence of a Qc site in the cytochrome b6/f complex and its obligate function in ferredoxin catalyzed cyclic electron flow and b) a non-essential role of the Qc site in non-cyclic electron flow, but which — when operative — pumps an extra proton across the thylakoid membrane increasing the ATP yield.  相似文献   

15.
Yusuke Tsukatani  Chihiro Azai  Shigeru Itoh 《BBA》2008,1777(9):1211-1217
We studied the regulation mechanism of electron donations from menaquinol:cytochrome c oxidoreductase and cytochrome c-554 to the type I homodimeric photosynthetic reaction center complex of the green sulfur bacterium Chlorobium tepidum. We measured flash-induced absorption changes of multiple cytochromes in the membranes prepared from a mutant devoid of cytochrome c-554 or in the reconstituted membranes by exogenously adding cytochrome c-555 purified from Chlorobium limicola. The results indicated that the photo-oxidized cytochrome cz bound to the reaction center was rereduced rapidly by cytochrome c-555 as well as by the menaquinol:cytochrome c oxidoreductase and that cytochrome c-555 did not function as a shuttle-like electron carrier between the menaquinol:cytochrome c oxidoreductase and cytochrome cz. It was also shown that the rereduction rate of cytochrome cz by cytochrome c-555 was as high as that by the menaquinol:cytochrome c oxidoreductase. The two electron-transfer pathways linked to sulfur metabolisms seem to function independently to donate electrons to the reaction center.  相似文献   

16.
When a total soluble extract of Nitrosomonas europaea was denatured with dodecyl sulphate, subjected to dodecyl sulphate/polyacrylamide-gel electrophoresis and illuminated with near-u.v. light, eight bands of protein fluorescence were observed. All but one of these bands were red in colour, a property characteristic of c-type cytochromes. Standard techniques were used to purify soluble c-type cytochromes from this organism, and it was then possible to assign all but two very minor bands to specific c-type cytochromes, namely hydroxylamine oxidase, cytochrome c-554, cytochrome c-552 and a cytochrome c-550 not previously described. The eight band had fluorescence peaking in the green region of the spectrum, probably caused by covalently bound flavin, and co-purified with hydroxylamine oxidase. The following physical properties were determined for these components: isoelectric point, molecular weights according to gel filtration and mobility on dodecyl sulphate/polyacrylamide gels, and alpha-band spectra at room temperature and 77K. Redox potentials were measured as follows: cytochrome c-554, E(m,7) = +20mV; cytochrome c-552, E(m,7) = +230mV; cytochrome c-550, E(m,7) = +140mV. When washed membranes were applied to dodecyl sulphate/polyacrylamide gels in the same way, a number of fluorescent bands were observed that could be matched by soluble proteins. In addition, there was one band that could not be detected in supernatants, migrating with an apparent molecular weight of 24000. This species is probably coincident with a c-type cytochrome having E(m,7) = +170mV found in redox titration of these membranes. In future studies, gel fluorescence should form a useful complement to spectroscopy for analysis of cytochrome composition in active cell-free preparations or semi-purified material.  相似文献   

17.
Soluble cytochrome c-554 (M r 10 kDa) is purified from the green sulfur bacterium Chlorobium tepidum. Its midpoint redox potential is determined to be +148 mV from redox titration at pH 7.0. The kinetics of cytochrome c-554 oxidation by a purified reaction center complex from the same organism were studied by flash absorption spectroscopy at room temperature, and the results indicate that the reaction partner of cytochrome c-554 is cytochrome c-551 bound to the reaction center rather than the primary donor P840. The second-order rate constant for the electron donation from cytochrome c-554 to cytochrome c-551 was estimated to be 1.7×107 M–1 s–1. The reaction rate was not significantly influenced by the ionic strength of the reaction medium.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
Antibodies to the solubilized purified Ca2+ -activated ATPase from the cytoplasmic membrane of Bacillus megaterium KM form a single precipitin line when they are tested against the homologous antigen. The antibodies inhibit both soluble and membrane-bound ATPase activity. The inhibition is non-competitive. Both protoplasts and cytoplasmic membranes of B. megaterium KM can compete with soluble ATPase for antibody although membranes compete more effectively than protoplasts. Addition of anti-ATPase immunoglobulin (IgG) to protoplasts or membranes causes agglutination. No agglutination occurs with control IgG. The clumping can be prevented by addition of purified ATPase to the IgG before mixing with the protoplasts or membranes. These results suggest that part of the ATPase molecule may be exposed on the outer surface of the cytoplasmic membrane, and part of the inner surface.  相似文献   

19.
The development of photochemical activities in isolated barley plastids during illumination of dark-grown plants has been studied and compared with the behaviour of plastocyanin, cytochromes f, b-559LP, b-563 and b-559HP and pigments P546 (C550) and P700. Electron-transport activity dependent on Photosystem 1 and cyclic photophosphorylation dependent on N-methylphenazonium methosulphate (phenazine methosulphate) were very active relative to the chlorophyll content after only a few minutes of illumination of etiolated leaves, and then rapidly declined during the first few hours of greening. By contrast, Photosystem 2 activity (measured with ferricyanide as electron acceptor) and non-cyclic photophosphorylation were not detectable during the first 2½h of greening, but then increased in total amount in parallel with chlorophyll. The behaviour of the electron carriers suggested their association with either Photosystem 1 or 2 respectively. In the first group were plastocyanin, cytochrome f and cytochrome b-563, whose concentrations in the leaf did not change during greening, and cytochrome b-559LP whose concentration fell to one-half its original value, and in the second group were cytochrome b-559HP and pigment P546, the concentrations of which closely followed the activities of Photosystem 2. Pigment P700 could not be detected during the first hour, during which time some other form of chlorophyll may take its place in the reaction centre of Photosystem 1. The plastids started to develop grana at about the time that Photosystem 2 activity became detectable.  相似文献   

20.
Hen liver microsomes contained 0.20 nmol of cytochromeb5 per mg of protein. Upon addition of NADH about 95% cytochrome b5 was reduced very fast with a rate constant of 206 s?1When ferricyanide was added to the reaction system the cytochrome stayed in the oxidized form until the ferricyanide reduction was almost completed. The reduced cytochrome b5 in microsomes was oxidized very rapidly by ferricyanide. The rate constant of 4.5 × 108m?1 s?1, calculated on the basis of assumption that ferricyanide reacts directly with the cytochrome, was found to be more than 100 times higher than that of the reaction between ferricyanide and soluble cytochrome b5. To explain the results, therefore, the reverse electron flow from cytochrome b5 to the flavin coenzyme in microsomes was assumed.By three independent methods the specific activity of the microsomes was measured at about 20 nmol of NADH oxidized per s per mg of protein and it was concluded that the reduction of the flavin coenzyme of cytochrome b5 reductase by NADH is rate-limiting in the NADH-cytochrome b5 and NADH-ferricyanide reductase reactions of hen liver microsomes. In the NADH-ferricyanide reductase reaction the apparent Michaelis constant for NADH was 2.8 μm and that for ferricyanide was too low to be measured. In the NADH-cytochrome c reductase reaction the maximum velocity was 2.86 nmol of cytochrome c reduced per s per mg of protein and the apparent Michaelis constant for cytochrome c was 3.8 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号