首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EcoRI restriction endonuclease cleavage site map of bacteriophage P22DNA.   总被引:5,自引:0,他引:5  
The F plasmid is able to co-transfer (mobilize) the small, chimeric R plasmid pBR322 during conjugation only at a very low frequency (Bolivar et al., 1977). Mobilization has been found here to be invariably (> 99%) associated with a structural alteration of pBR322. The alteration was shown, by restriction endonuclease analysis and electron microscopy, to be an insertion of the F attachment sequence λδ (2.8 to 8.5F). λδ is, therefore, an insertion sequence.  相似文献   

2.
W A Loenen  W J Brammar 《Gene》1980,10(3):249-259
Lambda derivatives are described that can be used for cloning DNA fragments of about 20 kilobase pairs (kb) generated by restriction enzymes EcoRi, HindIII, BamHI, MboI and BglII. Recombinants can be selected by their Spi- phenotype and their propagation is facilitated by the presence of a chi site.  相似文献   

3.
The effect of unusual polyamines, such as thermine, caldopentamine, caldohexamine, tris(3-aminopropyl)amine, or tetrakis(3-aminopropyl)ammonium, on the activities of various restriction endonucleases was investigated by using an Escherichia coli plasmid as a substrate, which contains a high GC content fragment from an extreme thermophile. Restriction enzymes used were SmaI, BanII, NaeI, RsaI, and TaqI. Most of the polyamines tested were inhibitory to the enzyme activities. The larger and more branched a polyamine was, the more the activities of nucleases were inhibited. The inhibition was positively correlated with the polyamine concentration. The sites protected by a polyamine were identical to those protected by other polyamines, and also identical to those which were less sensitive to the restriction enzyme in the absence of polyamines. No sequence specificity was seen among these sites.  相似文献   

4.
The five EcoRI2 restriction sites in bacteriophage lambda DNA have been mapped at 0.445, 0.543, 0.656, 0.810, and 0.931 fractional lengths from the left end of the DNA molecule. These positions were determined electron-microscopically by single-site cleavage of hydrogen-bonded circular λ DNA molecules and by cleavage of various DNA heteroduplexes between λ DNA and DNA from well defined λ mutants. The DNA lengths of the EcoRI fragments are in agreement with their electrophoretic mobility on agarose gels but are not in agreement with their mobilities on polyacrylamide gels. These positions are different from those previously published by Allet et al. (1973). Partial cleavage of pure λ DNA by addition of small amounts of EcoRI endonuclease does not lead to random cleavage between molecules. Also, the first site cleaved is not randomly distributed among the five sites within a molecule. The site nearest the right end is cleaved first about ten times more frequently than either of the two center sites.  相似文献   

5.
Type I restriction enzymes bind to a specific DNA sequence and subsequently translocate DNA past the complex to reach a non-specific cleavage site. We have examined several potential blocks to DNA translocation, such as positive supercoiling or a Holliday junction, for their ability to trigger DNA cleavage by type I restriction enzymes. Introduction of positive supercoiling into plasmid DNA did not have a significant effect on the rate of DNA cleavage by EcoAI endonuclease nor on the enzyme's ability to select cleavage sites randomly throughout the DNA molecule. Thus, positive supercoiling does not prevent DNA translocation. EcoR124II endonuclease cleaved DNA at Holliday junctions present on both linear and negatively supercoiled substrates. The latter substrate was cleaved by a single enzyme molecule at two sites, one on either side of the junction, consistent with a bi-directional translocation model. Linear DNA molecules with two recognition sites for endonucleases from different type I families were cut between the sites when both enzymes were added simultaneously but not when a single enzyme was added. We propose that type I restriction enzymes can track along a DNA substrate irrespective of its topology and cleave DNA at any barrier that is able to halt the translocation process.  相似文献   

6.
phiX RF DNA was cleaved by restriction enzymes from Haemophilus influenzae Rf (Hinf I) and Haemophilus haemolyticus (Hha. I). Twenty one fragments of approximately 25 to 730 base pairs were produced by Hinf I and seventeen fragments of approximately 40 to 1560 base pairs by Hha I. The order of these fragments has been established by digestion on Haemophilus awgyptius (Hae III) and Arthrobacter luteus (Alu I) endonuclease fragments of phiX RF with Hinf I and Hha1. By this method of reciprocal digestion a detailed cleavage map of phiX RF DNA was constructed, which includes also the previously determined Hind II, Hae III and Alu I cleavage maps of phiX 174 RF DNA (1, 2). Moreover, 28 conditional lethal mutants of bacteriophage phiX174 were placed in this map using the genetic fragment assay (3).  相似文献   

7.
The requirement of S-adenosyl-L-methionine (AdoMet) in the cleavage reaction carried out by type III restriction-modification enzymes has been investigated. We show that DNA restriction by EcoPI restriction enzyme does not take place in the absence of exogenously added AdoMet. Interestingly, the closely related EcoP15I enzyme has endogenously bound AdoMet and therefore does not require the addition of the cofactor for DNA cleavage. By employing a variety of AdoMet analogs, which differ structurally from AdoMet, this study demonstrates that the carboxyl group and any substitution at the epsilon carbon of methionine is absolutely essential for DNA cleavage. Such analogs could bring about the necessary conformational change(s) in the enzyme, which make the enzyme proficient in DNA cleavage. Our studies, which include native polyacrylamide gel electrophoresis, molecular size exclusion chromatography, UV, fluorescence and circular dichroism spectroscopy, clearly demonstrate that the holoenzyme and apoenzyme forms of EcoP15I restriction enzyme have different conformations. Furthermore, the Res and Mod subunits of the EcoP15I restriction enzyme can be separated by gel filtration chromatography in the presence of 2 M NaCl. Reconstitution experiments, which involve mixing of the isolated subunits, result in an apoenzyme form, which is restriction proficient in the presence of AdoMet. However, mixing the Res subunit with Mod subunit deficient in AdoMet binding does not result in a functional restriction enzyme. These observations are consistent with the fact that AdoMet is required for DNA cleavage. In vivo complementation of the defective mod allele with a wild-type mod allele showed that an active restriction enzyme could be formed. Furthermore, we show that while the purified c2-134 mutant restriction enzyme is unable to cleave DNA, the c2-440 mutant enzyme is able to cleave DNA albeit poorly. Taken together, these results suggest that AdoMet binding causes conformational changes in the restriction enzyme and is necessary to bring about DNA cleavage.  相似文献   

8.
Although the DNA cleavage mechanism of Type I restriction–modification enzymes has been extensively studied, the mode of cleavage remains elusive. In this work, DNA ends produced by EcoKI, EcoAI and EcoR124I, members of the Type IA, IB and IC families, respectively, have been characterized by cloning and sequencing restriction products from the reactions with a plasmid DNA substrate containing a single recognition site for each enzyme. Here, we show that all three enzymes cut this substrate randomly with no preference for a particular base composition surrounding the cleavage site, producing both 5′- and 3′-overhangs of varying lengths. EcoAI preferentially generated 3′-overhangs of 2–3 nt, whereas EcoKI and EcoR124I displayed some preference for the formation of 5′-overhangs of a length of ~6–7 and 3–5 nt, respectively. A mutant EcoAI endonuclease assembled from wild-type and nuclease-deficient restriction subunits generated a high proportion of nicked circular DNA, whereas the wild-type enzyme catalyzed efficient cleavage of both DNA strands. We conclude that Type I restriction enzymes require two restriction subunits to introduce DNA double-strand breaks, each providing one catalytic center for phosphodiester bond hydrolysis. Possible models for DNA cleavage are discussed.  相似文献   

9.
10.
Methods for obtaining highly active, exonuclease-free, stable preparations of the Streptomyces albus P restriction enzyme SalPI are described. SalPI and its isoschizomer PstI (from the taxonomically distant Providencia stuartii 164) both cleave their recognition sequence (5'-CTGCAG-3') to generate fragments terminating in tetranucleotide 3' extensions whose sequence is 5'-TGCA-3'. Bacteriophage R4G2 DNA, protected against SalPI cleavage by pregrowth on S. albus P, is also protected against PstI cleavage; and total DNA of both S. albus P and P. stuartii 164 is resistant to cleavage by both enzymes.  相似文献   

11.
12.
A survey of restriction endonucleases having different cleavage specificities has identified 10 that do not cut wild-type bacteriophage T7 DNA, 11 that cut at six or fewer sites, four that cut at 18 to 45 sites, and 12 that cut at more than 50 sites. All the cleavage sites for the 13 enzymes that cut at 26 or fewer sites have been mapped. Cleavage sites for each of the 10 enzymes that do not cut T7 DNA would be expected to occur an average of 9 to 10 times in a random nucleotide sequence the length of T7 DNA. A possible explanation for the lack of any cleavage sites for these enzymes might be that T7 encounters enzymes having these specificities in natural hosts, and that the sites have been eliminated from T7 DNA by natural selection. Five restriction endonucleases were found to cut within the terminal repetition of T7 DNA; one of these, KpnI, cuts at only three additional sites in the T7 DNA molecule. The length of the terminal repetition was estimated by two independent means to be approximately 155 to 160 base-pairs.  相似文献   

13.
Several type II restriction endonucleases interact with two copies of their target sequence before they cleave DNA. Three such enzymes, NgoMIV, Cfr10I and NaeI, were tested on plasmids with one or two copies of their recognition sites, and on catenanes containing two interlinked rings of DNA with one site in each ring. The enzymes showed distinct patterns of behaviour. NgoMIV and NaeI cleaved the plasmid with two sites faster than that with one site and the catenanes at an intermediate rate, while Cfr10I gave similar steady-state rates on all three substrates. Both Cfr10I and NgoMIV converted the majority of the substrates with two sites directly to the products cut at both sites, while NaeI cleaved just one site at a time. All three enzymes thus synapse two DNA sites through three-dimensional space before cleaving DNA. With Cfr10I and NgoMIV, both sites are cleaved in one turnover, in a manner consistent with their tetrameric structures, while the cleavage of a single site by NaeI indicates that the second site acts not as a substrate but as an activator, as reported previously. The complexes spanning two sites have longer lifetimes on catenanes with one site in each ring than on circular DNA with two sites, which indicates that the catenanes have more freedom for site juxtaposition than plasmids with sites in cis.  相似文献   

14.
15.
Two methods to detect DNA fragments produced by restriction enzymes   总被引:1,自引:0,他引:1  
This report summarizes two methods for detecting limited amounts of DNA from restriction endonuclease digests. The first is a photographic system for visualizing ethidium bromide-stained DNA fragments in agarose gels which can detect as little as 50-100 pg DNA per band. The second technique is direct sulfonation of DNA fragments bound to nylon membranes followed by visualization of the fragments by nonradioactive immunoblot methods. The immunohistochemical staining can detect 10 pg DNA per band. The direct sulfonation technique is not intended to identify specific DNA sequences; DNA-DNA hybridization with sulfonated probes has previously been described (P. Lebacq, D. Squalli, M. Duchenne, P. Poulety, and M. Johannes (1988) J. Biochem. Biophys. Methods 15, 255-266). Direct sulfonation can be used when samples are relatively free of contaminating nucleic acids and is a useful alternative to end-labeling. These highly sensitive techniques may be suitable when the DNA source is of limited quantity or in instances where radiolabeling is not permitted.  相似文献   

16.
17.
The large subunit catalase HPII from Escherichia coli can be truncated by proteolysis to a structure similar to small subunit catalases. Mass spectrometry analysis indicates that there is some heterogeneity in the precise cleavage sites, but approximately 74 N-terminal residues, 189 C-terminal residues, and a 9-11-residue internal fragment, including residues 298-308, are removed. Crystal structure refinement at 2.8 A reveals that the tertiary and quaternary structure of the native enzyme is retained with only very subtle changes despite the loss of 36% of the sequence. The truncated variant exhibits a 1.8 times faster turnover rate and enhanced sensitivity to high concentrations of H(2)O(2), consistent with easier access of the substrate to the active site. In addition, the truncated variant is more sensitive to inhibition, particularly by reagents such as aminotriazole and azide which are larger than substrate H(2)O(2). The main channel leading to the heme cavity is largely unaffected by the truncation, but the lateral channel is shortened and its entrance widened by removal of the C-terminal domain, providing an explanation for easier access to the active site. Opening of the entrance to the lateral channel also opens the putative NADPH binding site, but NADPH binding could not be demonstrated. Despite the lack of bound NADPH, the compound I species of both native and truncated HPII are reduced back to the resting state with compound II being evident in the absorbance spectrum only of the heme b-containing H392A variant.  相似文献   

18.
J M Voigt  M D Topal 《Biochemistry》1990,29(6):1632-1637
The interactions of restriction enzymes with their cognate DNA recognition sequences present a model for protein-DNA interactions. We have investigated the effect of O6-methylguanine on restriction enzyme cleavage of DNA; O6-methylguanine is a carcinogenic lesion and a structural analogue of the biological restriction inhibitor N6-methyladenine. O6-Methylguanine was synthesized into oligonucleotides at unique positions. The oligonucleotides were purified and analyzed by high-pressure liquid chromatography to assure that, within the limits of our detection, O6-methylguanine was the only modified base present. These oligonucleotides were annealed with their complement so that cytosine, and in one case thymine, opposed O6-methylguanine. DNA cleavage by restriction enzymes that recognize a unique DNA sequence, HpaII, HhaI, HinPI, NaeI, NarI, PvuII, and XhoI, was inhibited by a single O6-methylguanine in place of guanine (adenine for PvuII) within the appropriate recognition sequences. However, only the modified strand was nicked by HpaII, NaeI, and XhoI with O6-methylguanine at certain positions, indicating asymmetric strand cleavage. For all the restriction enzymes studied but AhaII, BanI, and NarI, lack of double- or single-strand cleavage correlated with inability of the O6-methylguanine-containing recognition sequence to measurably bind enzyme. None of the restriction enzymes studied were inhibited by O6-methylguanine outside their cognate recognition sequences.  相似文献   

19.
Modes of DNA cleavage by the EcoRV restriction endonuclease   总被引:6,自引:0,他引:6  
S E Halford  A J Goodall 《Biochemistry》1988,27(5):1771-1777
The mechanism of action of the EcoRV restriction endonuclease at its single recognition site on the plasmid pAT153 was analyzed by kinetic methods. In reactions at pH 7.5, close to the optimum for this enzyme, both strands of the DNA were cut in a single concerted reaction: DNA cut in only one strand of the duplex was neither liberated from the enzyme during the catalytic turnover nor accumulated as a steady-state intermediate. In contrast, reactions at pH 6.0 involved the sequential cutting of the two strands of the DNA. Under these conditions, DNA cut in a single strand was an obligatory intermediate in the reaction pathway and a fraction of the nicked DNA dissociated from the enzyme during the turnover. The different reaction profiles are shown to be consistent with a single mechanism in which the kinetic activity of each subunit of the dimeric protein is governed by its affinity for Mg2+ ions. At pH 7.5, Mg2+ is bound to both subunits of the dimer for virtually the complete period of the catalytic turnover, while at pH 6.0 Mg2+ is bound transiently to one subunit at a time. The kinetics of the EcoRV nuclease were unaffected by DNA supercoiling.  相似文献   

20.
The cleavage of Drosophila melanogaster DNA by restriction endonucleases   总被引:2,自引:2,他引:0  
Drosophila melanogaster DNA, together with λ and E. coli DNAs as controls, was digested with three different restriction endonucleases: EcoRI, Hind, and Hae. The size distributions of the segments were characterized by gel electrophoresis. More than 85% of the D. melanogaster DNA was found in a broad distribution of segment lengths consistent with random location of restriction sites. However, some DNA was spared and recovered in very long (≥20500bp) segments. These segments proved to be mostly simple sequence DNA. No complex spared segments could be found in Hind and Hae digests, while 50% of the spared EcoRI segments had a complexity exceeding that of the E. coli DNA spared by this enzyme. These data do not support the hypothesis that chromomeres contain long regions of purely tandemly repeating sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号