首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PURPOSE OF REVIEW: HDL is a recognized negative risk factor for the cardiovascular diseases. Establishing the genetic determinants of HDL concentration and functions would add to the prediction of cardiovascular risk and point to the biochemical mechanisms underlying this risk. The present review focuses on various approaches to establish genetic determinants of the HDL concentration, structure and function. RECENT FINDINGS: While many genes contribute to the HDL concentration and collectively account for half of the variability, polymorphism of individual candidate genes contributes little. There are strong interactions between environmental and genetic influences. Recent findings have confirmed that APOA1 and ABCA1 exert the strongest influence on HDL concentrations and risk of atherosclerosis. CETP and lipases also affect the HDL concentration and functionality, but their connection to the atherosclerosis risk is conditional on the interaction between environmental and genetic factors. SUMMARY: Analysis of genetic determinants of HDL-cholesterol in patients with specific disease states or in response to the environmental condition may be a more accurate way to assess variations in HDL concentration. This may result in defining the rules of interaction between genetic and environmental factors and lead to understanding the mechanisms responsible for the variations in HDL concentration and functionality.  相似文献   

2.
3.
4.
Inorganic polyphosphates in biology: structure, metabolism, and function   总被引:35,自引:0,他引:35  
  相似文献   

5.
Genetic analysis of proteoglycan structure, function and metabolism   总被引:27,自引:0,他引:27  
Significant progress has been made in understanding the structure, function, and metabolism of proteoglycans. Many of the advances derive from the application of recombinant DNA methodology to their core proteins and from the characterization of animal cell mutants altered in glycosaminoglycan synthesis.  相似文献   

6.
Hepatic lipase and HDL metabolism   总被引:12,自引:0,他引:12  
Hepatic lipase is a lipolytic enzyme that has been suggested to have a role in HDL metabolism. Evidence suggests that HDL-cholesterol level is at least partly regulated by hepatic lipase level. Recent studies have shown that hepatic lipase not only hydrolyzes triglyceride and phospholipid in HDL, but also stimulates HDL cholesterol ester uptake by hepatocytes. Therefore, hepatic lipase, together with lipid transfer proteins, determines both HDL-cholesterol level and its function in reverse cholesterol transport. These conclusions are based on observations from in-vitro model substrate studies, cell culture studies, transgenic animal studies, and clinical studies. At present time, it is not known whether hepatic lipase action increases or decreases risk of developing atherosclerosis.  相似文献   

7.
Endothelial lipase and HDL metabolism   总被引:9,自引:0,他引:9  
PURPOSE OF REVIEW: In the past year, several laboratories taking independent approaches have provided compelling evidence that endothelial lipase, a relatively recent addition to the triglyceride lipase gene family, is a major determinant of HDL metabolism. This review summarizes recent findings from experiments in mice with altered levels of endothelial lipase, from an examination of endothelial lipase catalytic and non-catalytic functions in vitro, and from human genetic studies. RECENT FINDINGS: An analysis of lipids and lipoproteins in endothelial lipase knockout and transgenic mice and in mice with adenovirus-driven hepatic overexpression of endothelial lipase shows, without exception, that total cholesterol, phospholipid and HDL-cholesterol all vary inversely with the endothelial lipase gene dosage, and primarily depend on endothelial lipase catalytic activity. Endothelial lipase participates in HDL metabolism by promoting the turnover of HDL components and increasing the catabolism of apolipoprotein A-I. The measurement of lipase activity on lipoprotein substrates in vitro demonstrates that endothelial lipase is distinct from other triglyceride lipases in showing the highest activity on HDL. Endothelial lipase gene polymorphisms in humans appear to be associated with HDL-cholesterol or HDL3-cholesterol concentrations. SUMMARY: A low HDL-cholesterol level in humans is a risk factor for coronary heart disease. Although not yet demonstrated, it is possible that the action of endothelial lipase on HDL may promote atherogenesis, in which case endothelial lipase may represent an attractive target for pharmaceutical intervention.  相似文献   

8.
9.
10.
11.
12.
Sterol molecule: structure, biosynthesis, and function.   总被引:7,自引:0,他引:7  
K Bloch 《Steroids》1992,57(8):378-383
This review briefly summarizes key researches on the structure of the sterol molecule from its very beginnings to the definitive elucidation in 1932. Cholesterol biosynthesis treated in somewhat greater detail covers the period from the 1930s to the 1960s. As a historic contribution, it presents researches previously published in numerous books, reviews, and original papers. The selection of topics, dictated by limits of time and space, is necessarily arbitrary and a personal choice. Readers of this journal will be familiar with the relevant chemical structures. Structural formulas are therefore omitted.  相似文献   

13.
hnRNP complexes: composition, structure, and function.   总被引:28,自引:0,他引:28  
  相似文献   

14.
15.
16.
17.
Dolichol, a homologous series of alpha-saturated polyisoprenoid alcohols containing 14-24 isoprene units, was first isolated and characterized about 30 years ago. The phosphorylated form, dolichyl phosphate, is required for the biosynthesis of biologically important N-linked glycoproteins. Dolichol itself is synthesized by a common isoprenoid pathway from acetate and synthesis can be inhibited by some of the factors that inhibit cholesterol biosynthesis. It is metabolized very slowly and accumulates in tissues during aging and in certain lipid storage diseases. Dolichyl phosphate and cholesterol also accumulate in tissues during aging, but to a lesser extent than dolichol. Although dolichol and cholesterol have important metabolic functions, their accumulation in tissues can have deleterious effects.  相似文献   

18.
Vitamin E: function and metabolism.   总被引:32,自引:0,他引:32  
Although vitamin E has been known as an essential nutrient for reproduction since 1922, we are far from understanding the mechanisms of its physiological functions. Vitamin E is the term for a group of tocopherols and tocotrienols, of which alpha-tocopherol has the highest biological activity. Due to the potent antioxidant properties of tocopherols, the impact of alpha-tocopherol in the prevention of chronic diseases believed to be associated with oxidative stress has often been studied, and beneficial effects have been demonstrated. Recent observations that the alpha-tocopherol transfer protein in the liver specifically sorts out RRR-alpha-tocopherol from all incoming tocopherols for incorporation into plasma lipoproteins, and that alpha-tocopherol has signaling functions in vascular smooth muscle cells that cannot be exerted by other forms of tocopherol with similar antioxidative properties, have raised interest in the roles of vitamin E beyond its antioxidative function. Also, gamma-tocopherol might have functions apart from being an antioxidant. It is a nucleophile able to trap electrophilic mutagens in lipophilic compartments and generates a metabolite that facilitates natriuresis. The metabolism of vitamin E is equally unclear. Excess alpha-tocopherol is converted into alpha-CEHC and excreted in the urine. Other tocopherols, like gamma- and delta-tocopherol, are almost quantitatively degraded and excreted in the urine as the corresponding CEHCs. All rac alpha-tocopherol compared to RRR-alpha-tocopherol is preferentially degraded to alpha-CEHC. Thus, there must be a specific, molecular role of RRR-alpha-tocopherol that is regulated by a system that sorts, distributes, and degrades the different forms of vitamin E, but has not yet been identified. In this article we try to summarize current knowledge on the function of vitamin E, with emphasis on its antioxidant vs. other properties, the preference of the organism for RRR-alpha-tocopherol, and its metabolism to CEHCs.  相似文献   

19.
PURPOSE OF REVIEW: Genetic disorders of HDL metabolism are rare and, as a result, the assessment of atherosclerosis risk in individuals suffering from these disorders has been difficult. Ultrasound imaging of carotid arteries has provided a tool to assess the risk in hereditary hypo and hyperalphalipoproteinemia. This review gives a comprehensive summary. RECENT FINDINGS: Epidemiological studies have unequivocally shown that HDL cholesterol levels are inversely related to coronary artery disease risk, but the literature concerning genetic disorders of HDL metabolism provides less convincing information. Fortuitously, we were able to directly compare carotid intima media thickness data of substantial numbers of individuals with mutations in either apolipoprotein A-I (apoA-I), ATP binding cassette AI (ABCA1), lecithin: cholesterol acyltransferase (LCAT) or cholesteryl ester transfer protein. These data show that carriers of an apoA-I mutation exhibit the most pronounced accelerated atherosclerosis compared with those carrying mutations in ABCA1 and LCAT. Heterozygosity for a non-sense mutation in cholesteryl ester transfer protein did, by contrast, not distinguish carriers from controls in terms of intima media thickness progression. We will discuss these results in the context of the current literature. SUMMARY: Intima media thickness studies have provided evidence that hypoalphalipoproteinemia due to mutations in apoA-I, ABCA1, and LCAT is associated with increased progression of atherosclerosis. In contrast, hyperalphalipoproteinemia as a result of loss of cholesteryl ester transfer protein function is associated with unaltered atherosclerosis progression compared with family controls. This insight is of interest, since it can assist in the prioritizing of antiatherogenic therapy by increasing HDL cholesterol levels.  相似文献   

20.
Mucins: structure, function, and associations with malignancy.   总被引:15,自引:0,他引:15  
Mucins are a family of high molecular weight, highly glycosylated glycoproteins found in the apical cell membrane of human epithelial cells from the mammary gland, salivary gland, digestive tract, respiratory tract, kidney, bladder, prostate, uterus and rete testis. Increased synthesis of the core protein and alterations in the carbohydrates attached to these glycoproteins are believed to play important roles in the function and proliferation of tumour cells. Aberrant glycosylation leads not only to the production of novel carbohydrate structures, but also to the exposure of the core peptide. These novel epitopes may be candidates for diagnosis or therapy, by using either synthetic mucin fragments as vaccines, or monoclonal antibody-based reagents which detect these structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号