首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Truncated versions of heavy-chain antibodies (HCAbs) from camelids, also termed nanobodies, comprise only one-tenth the mass of conventional antibodies, yet retain similar, high binding affinities for the antigens. Here we analyze a large data set of nanobody–antigen crystal structures and investigate how nanobody–antigen recognition compares to the one by conventional antibodies. We find that nanobody paratopes are enriched in aromatic residues just like conventional antibodies, but additionally, they also bear a more hydrophobic character. Most striking differences were observed in the characteristics of the antigen's epitope. Unlike conventional antibodies, nanobodies bind to more rigid, concave, conserved and structured epitopes enriched with aromatic residues. Nanobodies establish fewer interactions with the antigens compared to conventional antibodies, and we speculate that high binding affinities are achieved due to less unfavorable conformational and more favorable solvation entropy contributions. We observed that interactions with antigen are mediated not only by three CDR loops but also by numerous residues from the nanobody framework. These residues are not distributed uniformly; rather, they are concentrated into four structurally distinct regions and mediate mostly charged interactions. Our findings suggest that in some respects nanobody–antigen interactions are more similar to the general protein–protein interactions rather than antibody–antigen interactions.  相似文献   

2.
The tumor-associated glycoprotein 72 (TAG-72) is a membrane mucin whose over-expression is correlated with advanced tumor stage and increased invasion and metastasis. In this study, we identified a panel of four nanobodies, single variable domains of dromedary heavy-chain antibodies that specifically recognize the TAG-72 antigen. All selected nanobodies were shown to selectively bind to this cancer-related molecule with low-nanomolar affinities and do not cross-react with other antigens, such as MUC1 or HER2. Furthermore, they can detect TAG-72 in concentrations as low as 5 U/ml which is valuable in sensitive detection of this molecule in cancerous patients. Cell ELISA experiments proved their ability for binding to the native target antigen on TAG-72 expressing cells while not showing any reactivity to HT-29 cells, a TAG-72-negative cell line. Using competition studies, we found that each nanobody recognizes a distinct epitope on the TAG-72 antigen that is different from the one recognized by the mouse anti-TAG-72 antibody, CC49. Considering their high specificity, reduced immunogenicity and multi-targeting behavior, these oligoclonal nanobodies represent a promising tool to target TAG-72 over-expressing tumor cells.  相似文献   

3.
Human IgG comprises four subclasses with different biological functions. The IgG3 subclass has a unique character, exhibiting high effector function and Fab arm flexibility. However, it is not used as a therapeutic drug owing to an enhanced susceptibility to proteolysis. Antibody aggregation control is also important for therapeutic antibody development. To date, there have been few reports of IgG3 aggregation during protein expression and the low pH conditions needed for purification and virus inactivation. This study explored the potential of IgG3 antibody for therapeutics using anti‐CD20 IgG3 as a model to investigate aggregate formation. Initially, anti‐CD20 IgG3 antibody showed substantial aggregate formation during expression and low pH treatment. To circumvent this phenomenon, we systematically exchanged IgG3 constant domains with those of IgG1, a stable IgG. IgG3 antibody with the IgG1 CH3 domain exhibited reduced aggregate formation during expression. Differential scanning calorimetric analysis of individual amino acid substitutions revealed that two amino acid mutations in the CH3 domain, N392K and M397V, reduced aggregation and increased CH3 transition temperature. The engineered human IgG3 antibody was further improved by additional mutations of R435H to obtain IgG3KVH to achieve protein A binding and showed similar antigen binding as wild‐type IgG3. IgG3KVH also exhibited high binding activity for FcγRIIIa and C1q. In summary, we have successfully established an engineered human IgG3 antibody with reduced aggregation during bioprocessing, which will contribute to the better design of therapeutic antibodies with high effector function and Fab arm flexibility.  相似文献   

4.
The antigen‐binding site of antibodies forms at the interface of their two variable domains, VH and VL, making VH–VL domain orientation a factor that codetermines antibody specificity and affinity. Preserving VH–VL domain orientation in the process of antibody engineering is important in order to retain the original antibody properties, and predicting the correct VH–VL orientation has also been recognized as an important factor in antibody homology modeling. In this article, we present a fast sequence‐based predictor that predicts VH–VL domain orientation with Q2 values ranging from 0.54 to 0.73 on the evaluation set. We describe VH–VL orientation in terms of the six absolute ABangle parameters that have recently been proposed as a means to separate the different degrees of freedom of VH–VL domain orientation. In order to assess the impact of adjusting VH–VL orientation according to our predictions, we use the set of antibody structures of the recently published Antibody Modeling Assessment (AMA) II study. In comparison to the original AMAII homology models, we find an improvement in the accuracy of VH–VL orientation modeling, which also translates into an improvement in the average root‐mean‐square deviation with regard to the crystal structures. Proteins 2015; 83:681–695. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
The limited size of the germline antibody repertoire has to recognize a far larger number of potential antigens. The ability of a single antibody to bind multiple ligands due to conformational flexibility in the antigen‐binding site can significantly enlarge the repertoire. Among the six complementarity determining regions (CDRs) that generally comprise the binding site, the CDR H3 loop is particularly variable. Computational protein design studies showed that predicted low energy sequences compatible with a given backbone structure often have considerable similarity to the corresponding native sequences of naturally occurring proteins, indicating that native protein sequences are close to optimal for their structures. Here, we take a step forward to determine whether conformational flexibility, believed to play a key functional role in germline antibodies, is also central in shaping their native sequence. In particular, we use a multi‐constraint computational design strategy, along with the Rosetta scoring function, to propose that the native sequences of CDR H3 loops from germline antibodies are nearly optimal for conformational flexibility. Moreover, we find that antibody maturation may lead to sequences with a higher degree of optimization for a single conformation, while disfavoring sequences that are intrinsically flexible. In addition, this computational strategy allows us to predict mutations in the CDR H3 loop to stabilize the antigen‐bound conformation, a computational mimic of affinity maturation, that may increase antigen binding affinity by preorganizing the antigen binding loop. In vivo affinity maturation data are consistent with our predictions. The method described here can be useful to design antibodies with higher selectivity and affinity by reducing conformational diversity. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
It is well established that all camelids have unique antibodies circulating in their blood. Unlike antibodies from all other species, these special antibodies are devoid of light chains, and are composed of a heavy chain homodimer. These so-called heavy-chain antibodies (HCAbs) are expressed after a V-D-J rearrangement and require dedicated constant gamma genes. An immune response is raised in these HCAbs following a classical immunization protocol. These HCAbs are easily purified from serum, and their antigen-binding fragment interacts with parts of the target that are less antigenic to conventional antibodies. The antigen binding site of the dromedary HCAb comprises one single domain, referred to as VHH or nanobody (Nb), therefore, a strategy was designed to clone the Nb repertoire of an immunized dromedary and to select the Nb with specificity for our target antigens. The monoclonal Nb is produced well in bacteria, is very stable and highly soluble, and it binds the antigen with high affinity and specificity. Currently, the recombinant Nb has been developed successfully for research purposes, as a probe in biosensors, to diagnose infections, or to treat diseases such as cancer or trypanosomiasis.  相似文献   

7.
In addition to antibodies with the classical composition of heavy and light chains, the adaptive immune repertoire of sharks also includes a heavy-chain only isotype, where antigen binding is mediated exclusively by a small and highly stable domain, referred to as vNAR. In recent years, due to their high affinity and specificity combined with their small size, high physicochemical stability and low-cost of production, vNAR fragments have evolved as promising target-binding scaffolds that can be tailor-made for applications in medicine and biotechnology. This review highlights the structural features of vNAR molecules, addresses aspects of their generation using immunization or in vitro high throughput screening methods and provides examples of therapeutic, diagnostic and other biotechnological applications.  相似文献   

8.
《MABS-AUSTIN》2013,5(1):15-25
In addition to antibodies with the classical composition of heavy and light chains, the adaptive immune repertoire of sharks also includes a heavy-chain only isotype, where antigen binding is mediated exclusively by a small and highly stable domain, referred to as vNAR. In recent years, due to their high affinity and specificity combined with their small size, high physicochemical stability and low-cost of production, vNAR fragments have evolved as promising target-binding scaffolds that can be tailor-made for applications in medicine and biotechnology. This review highlights the structural features of vNAR molecules, addresses aspects of their generation using immunization or in vitro high throughput screening methods and provides examples of therapeutic, diagnostic and other biotechnological applications.  相似文献   

9.
《Biophysical journal》2023,122(2):279-289
Protein-protein interactions are fundamental to life processes. Complementary computational, structural, and biophysical studies of these interactions enable the forces behind their specificity and strength to be understood. Antibody fragments such as single-chain antibodies have the specificity and affinity of full antibodies but a fraction of their size, expediting whole molecule studies and distal effects without exceeding the computational capacity of modeling systems. We previously reported the crystal structure of a high-affinity nanobody 59H10 bound to HIV-1 capsid protein p24 and deduced key interactions using all-atom molecular dynamics simulations. We studied the properties of closely related medium (37E7) and low (48G11) affinity nanobodies, to understand how changes of three (37E7) or one (48G11) amino acids impacted these interactions; however, the contributions of enthalpy and entropy were not quantified. Here, we report the use of qualitative and quantitative experimental and in silico approaches to separate the contributions of enthalpy and entropy. We used complementary circular dichroism spectroscopy and molecular dynamics simulations to qualitatively delineate changes between nanobodies in isolation and complexed with p24. Using quantitative techniques such as isothermal titration calorimetry alongside WaterMap and Free Energy Perturbation protocols, we found the difference between high (59H10) and medium (37E7) affinity nanobodies on binding to HIV-1 p24 is entropically driven, accounted for by the release of unstable waters from the hydrophobic surface of 59H10. Our results provide an exemplar of the utility of parallel in vitro and in silico studies and highlight that differences in entropic interactions between amino acids and water molecules are sufficient to drive orders of magnitude differences in affinity.  相似文献   

10.

Background

An effective therapy against envenoming should be a priority in view of the high number scorpion stings and snakebites. Serum therapy is still widely applied to treat the envenomation victims; however this approach suffers from several shortcomings. The employment of monoclonal antibodies might be an outcome as these molecules are at the core of a variety of applications from protein structure determination to cancer treatment. The progress of activities in the twilight zone between genetic and antibody engineering have led to the development of a unique class of antibody fragments. These molecules possess several benefits and lack many possible disadvantages over classical antibodies. Within recombinant antibody formats, nanobodies or single domain antigen binding fragments derived from heavy chain only antibodies in camelids occupy a privileged position.

Scope of review

In this paper we will briefly review the common methods of envenomation treatment and focus on details of various in vivo research activities that investigate the performance of recombinant, monoclonal nanobodies in venom neutralization.

Major conclusions

Nanobodies bind to their cognate target with high specificity and affinity, they can be produced in large quantities from microbial expression systems and are very robust even when challenged with harsh environmental conditions. Upon administering, they rapidly distribute throughout the body and seem to be well tolerated in humans posing low immunogenicity.

General significance

Scorpion and snake envenomation is a major issue in developing countries and nanobodies as a venom-neutralizing agent can be considered as a valuable and promising candidate in envenomation therapy.  相似文献   

11.
Abstract

Single-domain antibodies also known as nanobodies are recombinant antigen-binding domains that correspond to the heavy-chain variable region of camelid antibodies. Previous experimental studies showed that the nanobodies have stable and active structures at high temperatures. In this study, the thermal stability and dynamics of nanobodies have been studied by employing molecular dynamics simulation at different temperatures. Variations in root mean square deviation, native contacts, and solvent-accessible surface area of the nanobodies during the simulation were calculated to analyze the effect of different temperatures on the overall conformation of the nanobody. Then, the thermostability mechanism of this protein was studied through calculation of dynamic cross-correlation matrix, principal component analyses, native contact analyses, and root mean square fluctuation. Our results manifest that the side chain conformation of some residues in the complementarity-determining region 3 (CDR3) and also the interaction between α-helix region of CDR3 and framework2 play a critical role to stabilize the protein at a high temperature.

Communicated by Ramaswamy H. Sarma  相似文献   

12.
The variable VHH domains of camelid single chain antibodies have been useful in numerous biotechnology applications due to their simplicity, biophysical properties, and abilities to bind to their cognate antigens with high affinities and specificity. Their interactions with proteins have been well‐studied, but considerably less work has been done to characterize their ability to bind haptens. A high‐resolution structural study of three nanobodies (T4, T9, and T10) which have been shown to bind triclocarban (TCC, 3‐(4‐chlorophenyl)‐1‐(3,4‐dichlorophenyl)urea) with near‐nanomolar affinity shows that binding occurs in a tunnel largely formed by CDR1 rather than a surface or lateral binding mode seen in other nanobody‐hapten interactions. Additional significant interactions are formed with a non‐hypervariable loop, sometimes dubbed “CDR4”. A comparison of apo and holo forms of T9 and T10 shows that the binding site undergoes little conformational change upon binding of TCC. Structures of three nanobody‐TCC complexes demonstrated there was not a standard binding mode. T4 and T9 have a high degree of sequence identity and bind the hapten in a nearly identical manner, while the more divergent T10 binds TCC in a slightly displaced orientation with the urea moiety rotated approximately 180° along the long axis of the molecule. In addition to methotrexate, this is the second report of haptens binding in a tunnel formed by CDR1, suggesting that compounds with similar hydrophobicity and shape could be recognized by nanobodies in analogous fashion. Structure‐guided mutations failed to improve binding affinity for T4 and T9 underscoring the high degree of natural optimization.  相似文献   

13.
Several types of bispecific antibodies with affinity to both adenoviral coat proteins and a targeted antigen have been developed with the aim of providing the specific delivery of adenoviral gene therapy vehicle. From a phage display library of combinatorial dAb2s (each with an anti-adenoviral knob protein V(H) fragment linked with an anti-c-Met V(H)), we serendipitously enriched and isolated a clone, JS5, that has polyspecificity such that it binds both the adenoviral knob protein and c-Met, despite having only one V(H) domain. Our indirect observations suggest that the polyspecificity of JS5 is developed through accumulation of antibody specificity. The method of sequential immunization of a rabbit, first with the adenoviral knob protein and then with target antigens, may provide a method by which monoclonal antibodies with stand-alone polyspecificity may be developed. Such targeted polyspecific antibodies could readily be used for re-directing adenoviral vectors to target cells.  相似文献   

14.
Developmental biology relies heavily on the use of conventional antibodies, but their production and maintenance involves significant effort. Here we use an expression cloning approach to identify variable regions of llama single domain antibodies (known as nanobodies), which recognize specific embryonic antigens. A nanobody cDNA library was prepared from lymphocytes of a llama immunized with Xenopus embryo lysates. Pools of bacterially expressed cDNAs were sib-selected for the ability to produce specific staining patterns in gastrula embryos. Three different nanobodies were isolated: NbP1 and NbP3 stained yolk granules, while the reactivity of NbP7 was predominantly restricted to the cytoplasm and the cortex. The isolated nanobodies recognized specific protein bands in immunoblot analysis. A reverse proteomic approach identified NbP1 target antigen as EP45/Seryp, a serine protease inhibitor. Given the unique stability of nanobodies and the ease of their expression in diverse systems, we propose that nanobody cDNA libraries represent a promising resource for molecular markers for developmental biology.  相似文献   

15.
Antibodies are a unique class of proteins with the ability to adapt their binding sites for high affinity and high specificity to a multitude of antigens. Many analyses have been performed on antibody sequences and structures to elucidate which amino acids have a predominant role in antibody interactions with antigens. These studies have generally not distinguished between amino acids selected for broad antigen specificity in the primary immune response and those selected for high affinity in the secondary immune response. By studying a large data set of affinity matured antibodies derived from in vitro directed evolution experiments, we were able to specifically highlight a subset of amino acids associated with affinity improvements. In a comparison of affinity maturations using either tailored or full amino acid diversification, the tailored approach was found to be at least as effective at improving affinity while requiring fewer mutagenesis libraries than the traditional method. The resulting sequence data also highlight the potential for further reducing amino acid diversity for high affinity binding interactions.  相似文献   

16.
《MABS-AUSTIN》2013,5(6):664-672
Antibodies are a unique class of proteins with the ability to adapt their binding sites for high affinity and high specificity to a multitude of antigens. Many analyses have been performed on antibody sequences and structures to elucidate which amino acids have a predominant role in antibody interactions with antigens. These studies have generally not distinguished between amino acids selected for broad antigen specificity in the primary immune response and those selected for high affinity in the secondary immune response. By studying a large data set of affinity matured antibodies derived from in vitro directed evolution experiments, we were able to specifically highlight a subset of amino acids associated with affinity improvements. In a comparison of affinity maturations using either tailored or full amino acid diversification, the tailored approach was found to be at least as effective at improving affinity while requiring fewer mutagenesis libraries than the traditional method. The resulting sequence data also highlight the potential for further reducing amino acid diversity for high affinity binding interactions.  相似文献   

17.
Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.  相似文献   

18.
Broadly neutralizing antibodies (bNAbs) to human immunodeficiency virus type 1 (HIV‐1) hold great promise for immunoprophylaxis and the suppression of viremia in HIV‐positive individuals. Several studies have demonstrated that plants as Nicotiana benthamiana are suitable hosts for the generation of protective anti‐HIV‐1 antibodies. However, the production of the anti‐HIV‐1 bNAbs 2F5 and PG9 in N. benthamiana is associated with their processing by apoplastic proteases in the complementarity‐determining‐region (CDR) H3 loops of the heavy chains. Here, it is shown that apoplastic proteases can also cleave the CDR H3 loop of the bNAb 2G12 when the unusual domain exchange between its heavy chains is prevented by the replacement of Ile19 with Arg. It is demonstrated that CDR H3 proteolysis leads to a strong reduction of the antigen‐binding potencies of 2F5, PG9, and 2G12‐I19R. Inhibitor profiling experiments indicate that different subtilisin‐like serine proteases account for bNAb fragmentation in the apoplast. Differential scanning calorimetry experiments corroborate that the antigen‐binding domains of wild‐type 2G12 and 4E10 are more compact than those of proteolysis‐sensitive antibodies, thus shielding their CDR H3 regions from proteolytic attack. This suggests that the extent of proteolytic inactivation of bNAbs in plants is primarily dictated by the steric accessibility of their CDR H3 loops.  相似文献   

19.
Synaptic vesicle fusion (exocytosis) is a precisely regulated process that entails the formation of SNARE complexes between the vesicle protein synaptobrevin 2 (VAMP2) and the plasma membrane proteins Syntaxin 1 and SNAP-25. The sub-cellular localization of the latter two molecules remains unclear, although they have been the subject of many recent investigations. To address this, we generated two novel camelid single domain antibodies (nanobodies) specifically binding to SNAP-25 and Syntaxin 1A. These probes penetrated more easily into samples and detected their targets more efficiently than conventional antibodies in crowded regions. When investigated by super-resolution imaging, the nanobodies revealed substantial extra-synaptic populations for both SNAP-25 and Syntaxin 1A, which were poorly detected by antibodies. Moreover, extra-synaptic Syntaxin 1A molecules were recruited to synapses during stimulation, suggesting that these are physiologically-active molecules. We conclude that nanobodies are able to reveal qualitatively and quantitatively different organization patterns, when compared to conventional antibodies.  相似文献   

20.
IgG2 subclass antibodies have unique properties that include low effector function and a rigid hinge region. Although some IgG2 subclasses have been clinically tested and approved for therapeutic use, they have a higher propensity than IgG1 for aggregation, which can curtail or abolish their biological activity and enhance their immunogenicity. In this regard, acid‐induced aggregation of monoclonal antibodies during purification and virus inactivation must be prevented. In the present study, we replaced the constant domain of IgG2 with that of IgG1, using anti‐2,4‐dinitrophenol (DNP) IgG2 as a model antibody, and investigated whether that would confer greater stability. While the anti‐DNP IgG2 antibody showed significant aggregation at low pH, this was reduced for the IgG2 antibody containing the IgG1 CH2 domain. Substituting three amino acids within the CH2 domain—namely, F300Y, V309L, and T339A (IgG2_YLA)—reduced aggregation at low pH and increased CH2 transition temperature, as determined by differential scanning calorimetric analysis. IgG2_YLA exhibited similar antigen‐binding capacity to IgG2, low affinity for FcγRIIIa, and low binding ability to C1q. The same YLA substitution also reduced the aggregation of panitumumab, another IgG2 antibody, at low pH. Our engineered human IgG2 antibody showed reduced aggregation during bioprocessing and provides a basis for designing improved IgG2 antibodies for therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号