首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated earlier that protein microenvironments were conserved around disulfide‐bridged cystine motifs with similar functions, irrespective of diversity in protein sequences. Here, cysteine thiol modifications were characterized based on protein microenvironments, secondary structures and specific protein functions. Protein microenvironment around an amino acid was defined as the summation of hydrophobic contributions from the surrounding protein fragments and the solvent molecules present within its first contact shell. Cysteine functions (modifications) were grouped into enzymatic and non‐enzymatic classes. Modifications studied were—disulfide formation, thio‐ether formation, metal‐binding, nitrosylation, acylation, selenylation, glutathionylation, sulfenylation, and ribosylation. 1079 enzymatic proteins were reported from high‐resolution crystal structures. Protein microenvironments around cysteine thiol, derived from above crystal structures, were clustered into 3 groups—buried‐hydrophobic, intermediate and exposed‐hydrophilic clusters. Characterization of cysteine functions were statistically meaningful for 4 modifications (disulfide formation, thioether formation, sulfenylation, and iron/zinc binding) those have sufficient amount of data in the current dataset. Results showed that protein microenvironment, secondary structure and protein functions were conserved for enzymatic cysteine functions, in contrast to the same function from non‐enzymatic cysteines. Disulfide forming enzymatic cysteines were tightly packed within intermediate protein microenvironment cluster, have alpha‐helical conformation and mostly belonged to CxxC motif of electron transport proteins. Disulfide forming non‐enzymatic cysteines did not belong to conserved motif and have variable secondary structures. Similarly, enzymatic thioether forming cysteines have conserved microenvironment compared to non‐enzymatic cystienes. Based on the compatibility between protein microenvironment and cysteine modifications, more efficient drug molecules could be designed against cysteine‐related diseases.  相似文献   

2.
休眠是植物种子对环境变化的适应机制,其机理至今未完全清楚阐明。前期对种子休眠机制的研究主要集中在激素调节上,近期的研究结果表明,一氧化氮(nitric oxide,NO)参与打破种子的休眠,并与其所引起的种子中活性氧的变化有关。本文简要综述活性氮(reactive nitrogen species,RNS)、活性氧(reactive oxygen species,R0s)和植物激素在种子休眠解除中的作用及相互关系研究进展。  相似文献   

3.
利用酵母、线虫、果蝇、小鼠等模式生物进行的研究表明,细胞的衰老过程与氧化还原紧密相关.伴随衰老,细胞内GSSG水平升高,GSH、NADPH等水平降低,而氧化还原状态变化将直接影响蛋白质的功能,特别是氧化还原敏感的含巯基蛋白质的功能,从而影响细胞信号转导和细胞命运.氧化还原失衡可能是衰老发生的重要因素.本综述将从氧化还原平衡与衰老、氧化还原调控与信号转导及衰老、氧化损伤与衰老等方面阐述细胞氧化还原调控与衰老研究的最新进展,提出并探讨氧化还原平衡的维持、氧化还原平衡的系统调控及氧化还原调控的个体化等延缓衰老及健康衰老的新策略.  相似文献   

4.
Electromagnetic fields (EMFs) played a role in the initiation of living systems, as well as subsequent evolution. The more recent literature on electrochemistry is documented, as well as magnetism. The large numbers of reports on interaction with living systems and the consequences are presented. An important aspect is involvement with cell signaling and resultant effects in which numerous signaling pathways participate. Much research has been devoted to the influence of man-made EMFs, e.g., from cell phones and electrical lines, on human health. The degree of seriousness is unresolved at present. The relationship of EMFs to reactive oxygen species (ROS) and oxidative stress (OS) is discussed. There is evidence that indicates a relationship involving EMFs, ROS, and OS with toxic effects. Various articles deal with the beneficial aspects of antioxidants (AOs) in countering the harmful influence from ROS-OS associated with EMFs. EMFs are useful in medicine, as indicated by healing bone fractures. Beneficial effects are recorded from electrical treatment of patients with Parkinson’s disease, depression, and cancer.  相似文献   

5.
Aged garlic extract (AGE) possesses multiple biological activities. We evaluated the protective effect of S-allyl cysteine (SAC), one of the organosulfur compounds of AGE, against carbon tetrachloride (CCl4)-induced acute liver injury in rats. SAC was administrated intraperitoneally (50–200 mg/kg). SAC significantly suppressed the increases of plasma ALT and LDH levels. SAC also attenuated histological liver damage. CCl4 administration induced lipid peroxidation accompanied by increases in the plasma malondialdehyde and hepatic 4-hydroxy-2-nonenal levels, and SAC dose-dependently attenuated these increases. The hepatic total level of hydroxyoctadecadienoic acid (HODE), a new oxidative stress biomarker, was closely correlated with the amount of liver damage. These results suggest that SAC decreased CCl4-induced liver injury by attenuation of oxidative stress, and may be a better therapeutic tool for chronic liver disease.  相似文献   

6.
Aged garlic extract (AGE) possesses multiple biological activities. We evaluated the protective effect of S-allyl cysteine (SAC), one of the organosulfur compounds of AGE, against carbon tetrachloride (CCl4)-induced acute liver injury in rats. SAC was administrated intraperitoneally (50-200 mg/kg). SAC significantly suppressed the increases of plasma ALT and LDH levels. SAC also attenuated histological liver damage. CCl4 administration induced lipid peroxidation accompanied by increases in the plasma malondialdehyde and hepatic 4-hydroxy-2-nonenal levels, and SAC dose-dependently attenuated these increases. The hepatic total level of hydroxyoctadecadienoic acid (HODE), a new oxidative stress biomarker, was closely correlated with the amount of liver damage. These results suggest that SAC decreased CCl4-induced liver injury by attenuation of oxidative stress, and may be a better therapeutic tool for chronic liver disease.  相似文献   

7.
A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1–240) and truncated (residues 19–240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.  相似文献   

8.
JNK介导的信号转导途径以及活性氧在其中的作用   总被引:2,自引:0,他引:2  
汪劼  易静 《生命科学》2006,18(4):361-367
JNK是一个受外界应激因素调控的信号分子,调节包括凋亡在内的一系列细胞内的反应,但目前越来越多的报道证实了JNK信号途径具有促凋亡和抗凋亡的双重功能,这种双重功能受到细胞类型、刺激物的种类、剂量和持续时间以及胞内其他信号途径的影响。活性氧作为一种常见的外界应激因素也部分参与了JNK信号途径的激活,对细胞的生死产生了重要的影响。本文将主要总结JNK介导的信号转导途径及活性氧在这一途径中所发挥的作用。  相似文献   

9.
Platelets play crucial roles in thrombosis and hemostasis through platelet activation and aggregation that are crucial in cardiovascular diseases. Hydroquinone (HQ) and its derivatives are present in many dermatological creams, paints, motor fuels, air, microorganisms, and plant products like wheat bread, fruit, coffee, and red wine. The effect of HQ on humans is not clear. In this study, we found that HQ (>25 μM) inhibited arachidonic acid (AA)-induced platelet aggregation. HQ suppressed AA-induced thromboxane B2 production of platelets. HQ (>10 μM) also attenuated ex vivo platelet-rich plasma aggregation. HQ prevented the interleukin (IL)-1β-induced 8-isoprostane, and PGE2 production, but not IL-8 production of pulp cells. These results indicate that HQ may have an antiplatelet effect via inhibition of thromboxane production. HQ has antioxidative and anti-inflammatory effects, and possible inhibition of COX. Exposure and consumption of HQ-containing products, food or drugs may have antiplatelet, antioxidative, and anti-inflammatory effects.  相似文献   

10.
Acetylcholinesterase (ACHE) is thought to play an important role during apoptosis.Our resultsshowed that H_2O_2 induced AChE activity,a functional marker in apoptosis,increases in neuronal-like PC 12cells.Glutathione, which is involved in cellular redox homeostasis,inhibited the increase of AChE activity,suggesting that reactive oxygen species (ROS) play a key role in this process.Further investigation showedthat the elevation of AChE was observed after the degradation of Akt, release of cytochrome c from mitochondriainto the cytosol,and activation of caspase family members.When nerve growth factor (NGF) was present,with the maintenance of Akt level,the elevation of AChE,the cytochrome c diffusion,as well as apoptosiswere markedly attenuated in H202-treated PC 12 cells. However,wortmannin,an inhibitor of the PI3K/Aktpathway,accelerated the apoptosis and increased the AChE activity.The overexpression of constitutivelyactivated Akt,which is a downstream signalling element of the NGF receptor TrkA,delayed mitochondrialcollapse and inhibited elevation of AChE activity.Thus, NGF prevented apoptosis and elevation of AChEactivity by activating the Akt pathway and stabilizing the function of mitochondria.  相似文献   

11.
氧化还原与细胞凋亡的关联   总被引:3,自引:0,他引:3  
石荣  贺福初 《生命科学》2004,16(2):81-83,95
细胞内氧化还原状态与细胞凋亡相互关联的机理仍然存在很大争议。细胞内氧化还原状态的改变促进了氧自由基(ROS)的产生和凋亡诱导因子的激活,致使细胞凋亡的同时又加剧了细胞内氧化还原状态的改变。通过激活细胞凋亡信号激酶(ASK-1)、氧化还原转录因子NF-κB、AP-1及Caspase激活,揭示了细胞内氧化还原状态伴随细胞凋亡的不同阶段。  相似文献   

12.
受体相互作用蛋白-3是丝/苏氨酸蛋白激酶家族成员(RIPs)之一,该蛋白家族作为细胞重要应激传感分子,在调控细胞存活、细胞凋亡和细胞坏死通路中发挥重要作用.近年研究发现,RIP3参与肿瘤坏死因子TNF-α诱导的细胞程序性坏死生物学过程,是TNF-α诱导的细胞凋亡与坏死不同死亡途径转换的关键开关分子.本文就RIP3分子的发现、结构特点、细胞亚定位、生理功能及其分子机制进行综述,并对RIP3分子的研究进行了展望.  相似文献   

13.
最近有关活性氧物质 (ROS)的研究取得了突飞猛进的进展,尤其是其作为第二信使介导了许多生理性与病理性细胞事件,包括细胞分化、过度生长、增殖及凋亡.为了避免ROS的毒性产生特异性的信号转导,ROS的产生与代谢必须被严格调控;其具体的调控机制一直是人们关注的焦点. 最近有关ROS区域化观点的提出解决了这一问题. NADPH是生成ROS的主要来源. 研究发现,NADPH氧化酶及其衍生的ROS存在于机体的多种组织内,且在细胞中呈区域化分布,对细胞内信号的精确调控具有至关重要的作用. NADPH一方面通过小窝/脂筏组装成功能型复合物,从而产生ROS区域化;另一方面,NADPH通过其不同亚细胞定位亚基与各种靶蛋白之间的相互作用,产生ROS特异性. 本文系统综述了NADPH衍生的ROS信号区域化,为进一步理解ROS信号在各种生理或病理过程的分子调控机制提供理论依据.  相似文献   

14.
15.
5种石斛及其组织培养物对活性氧的清除作用   总被引:23,自引:0,他引:23  
采用化学发光法,以3种活性氧R0S(02、  相似文献   

16.
大肠杆菌半胱氨酸脱硫酶(cysteine desulfurase,IscS)是一类依赖磷酸吡哆醛(pyridoxal phosphate,PLP)的同质二聚体的酶.IscS能催化游离底物L-半胱氨酸脱硫,生成L-丙氨酸和单质硫.在此催化过程中,可形成与酶结合的半胱氨酸过硫化物中间物,并出现了7种具有不同特征性吸收峰的中间反应物.为了研究PLP的结合及中间反应物的形成及累积,对IscS中与PLP结合相关,及IscS半胱氨酸活性口袋中特定氨基酸残基位点(His104,Glu156,Asp180,Gln183和Lys206)进行定点突变,结果发现:1)IscS突变体H104Q、D180G、Q183E、K206A对PLP的结合能力具有不同程度的减弱,酶的活性明显降低甚至消失,PLP与蛋白结合的特异吸收峰消失,或发生明显偏移并出现新的吸收峰,且这些新出现的吸收峰又与蛋白形成的各种中间反应物的吸收峰一致|2)IscS突变体E156Q的活性增高,PLP与蛋白结合的吸收峰明显增加.这些结果都表明,IscS氨基酸残基可通过影响PLP的结合及质子转移引起催化过程中不同中间反应物的形成及累积,同时提高或降低蛋白的活性.  相似文献   

17.
Human placental ribonuclease inhibitor(hRI)is an acidic protein of Mr-50kDa with unusually high contents of leucine and cysteine residues.It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease.hRI has 32 cysteine residues,and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI.The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence.In the present aork,two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis.The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation.After colony screening,the bacterium was cultured and the product Was purified with affinity chromatography.The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect.Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI.But the capacity of anti-oxidative effect increased by 7~9 times.The enhancement in anti-oxidative efrect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained.  相似文献   

18.
Human placental ribonuclease inhibitor (hRI) is an acidic protein of Mr∼50kDa with unusually high contents of leucine and cysteine residues. It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease. hRI has 32 cysteine residues, and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence. In the present aork, two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis. The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation. After colony screening, the bacterium was cultured and the product was purified with affinity chromatography. The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect. Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI. But the capacity of anti-oxidative effect increased by 7∼9 times. The enhancement in anti-oxidative effect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained. __________ Translated from HEREDITAS, 2005, 27(2) [译自: 遗传,2005,27(2)]  相似文献   

19.
In addition to insulin, glycemic control involves thyroid hormones. However, an excess of thyroid hormone can disturb the blood glucose equilibrium, leading to alterations of carbohydrate metabolism and, eventually, diabetes. Indeed, experimental and clinical hyperthyroidism is often accompanied by abnormal glucose tolerance. A common characteristic of hyperthyroidism and type 2 diabetes is the altered mitochondrial efficiency caused by the enhanced production of reactive oxygen and nitrogen species. It is known that an excess of thyroid hormone leads to increased oxidant production and mitochondrial oxidative damage. It can be hypothesised that these species represent the link between hyperthyroidism and development of insulin resistance and diabetes, even though direct evidence of this relationship is lacking. In this review, we examine the literature concerning the effects of insulin and thyroid hormones on glucose metabolism and discuss alterations of glucose metabolism in hyperthyroid conditions and the cellular and molecular mechanisms that may underline them.  相似文献   

20.
The current study was conducted on a sample of 91 patients diagnosed with diastolic dysfunction (DD) with preserved systolic function caused by a painful chronic ischaemic cardiopathy – angina pectoris stable at the effort. The diagnosis was established following anamnesis, electrocardiogram, and echocardiography. Myeloperoxidase (MPO) serum levels were assessed in all patients and then these values were correlated with some of the echocardiography parameters that proved the mentioned diagnosis.

In conclusion, the execution of this investigation triad (electrocardiogram, echocardiography, and MPO) allows:

  • Stratifying the patients depending on the disease risk by early detecting of any possible DD with preserved systolic function.

  • The use of the MPO increased circulating levels as a biomarker for diagnosis and risk due to the statistically significant correlation between those and the results of the other two aforementioned paraclinical investigation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号