首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of compounds to regulate the activation of the complement system in non‐primate species is of profound interest because it can provide models for human diseases. The peptide compstatin inhibits protein C3 in primate mammals and is a potential therapeutic agent against unregulated activation of complement in humans but is inactive against nonprimate species. Here, we elucidate this species specificity of compstatin by molecular dynamics simulations of complexes between the most potent natural compstatin analog and human or rat C3. The results are compared against an experimental conformation of the human complex, determined recently by X‐ray diffraction at 2.4‐Å resolution. The human complex simulations provide information on the relative contributions to stability of specific C3 and compstatin residues. In the rat simulations, the protein undergoes reproducible conformational changes, which eliminate or weaken specific interactions and reduce the complex stability. The simulation insights can be used to design improved compstatin‐based inhibitors for human C3 and active inhibitors against lower mammals. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The transporter MsbA is a kind of multidrug resistance ATP‐binding cassette transporter that can transport lipid A, lipopolysaccharides, and some amphipathic drugs from the cytoplasmic to the periplasmic side of the inner membrane. In this work, we explored the allosteric pathway of MsbA from the inward‐ to outward‐facing states during the substrate transport process with the adaptive anisotropic network model. The results suggest that the allosteric transitions proceed in a coupled way. The large‐scale closing motions of the nucleotide‐binding domains occur first, accompanied with a twisting motion at the same time, which becomes more obvious in middle and later stages, especially for the later. This twisting motion plays an important role for the rearrangement of transmembrane helices and the opening of transmembrane domains on the periplasmic side that mainly take place in middle and later stages respectively. The topological structure plays an important role in the motion correlations above. The conformational changes of nucleotide‐binding domains are propagated to the transmembrane domains via the intracellular helices IH1 and IH2. Additionally, the movement of the transmembrane domains proceeds in a nonrigid body, and the two monomers move in a symmetrical way, which is consistent with the symmetrical structure of MsbA. These results are helpful for understanding the transport mechanism of the ATP‐binding cassette exporters. Proteins 2015; 83:1643–1653. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Platelet aggregation is the consequence of the binding of extracellular bivalent ligands such as fibrinogen and von Willebrand factor to the high affinity, active state of integrin αIIbβ3. This state is achieved through a so‐called “inside‐out” mechanism characterized by the membrane‐assisted formation of a complex between the F2 and F3 subdomains of intracellular protein talin and the integrin β3 tail. Here, we present the results of multi‐microsecond, all‐atom molecular dynamics simulations carried on the complete transmembrane (TM) and C‐terminal (CT) domains of αIIbβ3 integrin in an explicit lipid‐water environment, and in the presence or absence of the talin‐1 F2 and F3 subdomains. These large‐scale simulations provide unprecedented molecular‐level insights into the talin‐driven inside‐out activation of αIIbβ3 integrin. Specifically, they suggest a preferred conformation of the complete αIIbβ3 TM/CT domains in a lipid‐water environment, and testable hypotheses of key intermolecular interactions between αIIbβ3 integrin and the F2/F3 domains of talin‐1. Notably, not only do these simulations give support to a stable left‐handed reverse turn conformation of the αIIb juxtamembrane motif rather than a helical turn, but they raise the question as to whether TM helix separation is required for talin‐driven integrin activation. Proteins 2014; 82:3231–3240. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Two important glycoproteins on the influenza virus membrane, hemagglutinin (HA) and neuraminidase (NA), are relevant to virus replication. As previously reported, HA has a substrate specificity towards SIA-2,3-GAL-1,4-NAG (3SL) and SIA-2,6-GAL-1,4-NAG (6SL) glycans, while NA can cleave both types of linkages. However, the substrate binding into NA and its preference are not well understood. In this work, the glycan binding and specificity of human and avian NAs were evaluated by classical molecular dynamics (MD) simulations, whilst the conformational diversity of 3SL avian and 6SL human glycans in an unbound state was investigated by replica exchange MD simulations. The results indicated that the 3SL avian receptor fits well in the binding cavity of all NAs and does not require a conformational change for such binding compared to the flexible shape of the 6SL human receptor. From the QM/MM-GBSA binding free energy and decomposition free energy data, 6SL showed a much stronger binding towards human NAs (H1N1, H2N2 and H3N2) than to avian NAs (H5N1 and H7N9). This suggests that influenza NAs have a substrate specificity corresponding to their HA, indicating the functional balance between the two important glycoproteins. Both linkages show distinct glycan topologies when complexed with NAs, while the flexibility of torsion angles between GAL and NAG in 6SL results in the various shapes of glycan and different binding patterns. Lower conformational diversities of both glycans when bound to NA compared to the unbound state were found, and were required in order to be accommodated within the NA cavity.

Communicated by Ramaswamy H. Sarma  相似文献   


5.
Human tyrosyl‐tRNA synthetase (HsTyrRS) is composed of two structural modules: N‐terminal catalytic core and an EMAP II‐like C‐terminal domain. The structures of these modules are known, but no crystal structure of the full‐length HsTyrRS is currently available. An all‐atom model of the full‐length HsTyrRS was developed in this work. The structure, dynamics, and domain binding interfaces of HsTyrRS were investigated by extensive molecular dynamics (MD) simulations. Our data suggest that HsTyrRS in solution consists of a number of compact asymmetric conformations, which differ significantly by their rigidity, internal mobility, orientation of C‐terminal modules, and the strength of interdomain binding. Interfaces of domain binding obtained in MD simulations are in perfect agreement with our previous coarse‐grained hierarchical rotations technique simulations. Formation of the hydrogen bonds between R93 residue of the ELR cytokine motif and the residues A340 and E479 in the C‐module was observed. This observation supports the idea that the lack of cytokine activity in the full‐length HsTyrRS is explained by interactions between N‐modules and C‐modules, which block the ELR motif. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The serotonin (5-HT) transporter (SERT) plays an important role in the termination of 5-HT-mediated neurotransmission by transporting 5-HT away from the synaptic cleft and into the presynaptic neuron. In addition, SERT is the main target for antidepressant drugs, including the selective serotonin reuptake inhibitors (SSRIs). The three-dimensional (3D) structure of SERT has not yet been determined, and little is known about the molecular mechanisms of substrate binding and transport, though such information is very important for the development of new antidepressant drugs. In this study, a homology model of SERT was constructed based on the 3D structure of a prokaryotic homologous leucine transporter (LeuT) (PDB id: 2A65). Eleven tryptamine derivates (including 5-HT) and the SSRI (S)-citalopram were docked into the putative substrate binding site, and two possible binding modes of the ligands were found. To study the conformational effect that ligand binding may have on SERT, two SERT–5-HT and two SERT–(S)-citalopram complexes, as well as the SERT apo structure, were embedded in POPC lipid bilayers and comparative molecular dynamics (MD) simulations were performed. Our results show that 5-HT in the SERT–5-HTB complex induced larger conformational changes in the cytoplasmic parts of the transmembrane helices of SERT than any of the other ligands. Based on these results, we suggest that the formation and breakage of ionic interactions with amino acids in transmembrane helices 6 and 8 and intracellular loop 1 may be of importance for substrate translocation.  相似文献   

7.
The intermediate filament protein keratin 8 (K8) interacts with the nucleotide‐binding domain 1 (NBD1) of the cystic fibrosis (CF) transmembrane regulator (CFTR) with phenylalanine 508 deletion (ΔF508), and this interaction hampers the biogenesis of functional ΔF508‐CFTR and its insertion into the plasma membrane. Interruption of this interaction may constitute a new therapeutic target for CF patients bearing the ΔF508 mutation. Here, we aimed to determine the binding surface between these two proteins, to facilitate the design of the interaction inhibitors. To identify the NBD1 fragments perturbed by the ΔF508 mutation, we used hydrogen–deuterium exchange coupled with mass spectrometry (HDX‐MS) on recombinant wild‐type (wt) NBD1 and ΔF508‐NBD1 of CFTR. We then performed the same analysis in the presence of a peptide from the K8 head domain, and extended this investigation using bioinformatics procedures and surface plasmon resonance, which revealed regions affected by the peptide binding in both wt‐NBD1 and ΔF508‐NBD1. Finally, we performed HDX‐MS analysis of the NBD1 molecules and full‐length K8, revealing hydrogen‐bonding network changes accompanying complex formation. In conclusion, we have localized a region in the head segment of K8 that participates in its binding to NBD1. Our data also confirm the stronger binding of K8 to ΔF508‐NBD1, which is supported by an additional binding site located in the vicinity of the ΔF508 mutation in NBD1.  相似文献   

8.
Single‐domain antibodies (sdAbs) function like regular antibodies, however, consist of only one domain. Because of their low molecular weight, sdAbs have advantages with respect to production and delivery to their targets and for applications such as antibody drugs and biosensors. Thus, sdAbs with high thermal stability are required. In this work, we chose seven sdAbs, which have a wide range of melting temperature (Tm) values and known structures. We applied molecular dynamics (MD) simulations to estimate their relative stability and compared them with the experimental data. High‐temperature MD simulations at 400 K and 500 K were executed with simulations at 300 K as a control. The fraction of native atomic contacts, Q, measured for the 400 K simulations showed a fairly good correlation with the Tm values. Interestingly, when the residues were classified by their hydrophobicity and size, the Q values of hydrophilic residues exhibited an even better correlation, suggesting that stabilization is correlated with favorable interactions of hydrophilic residues. Measuring the Q value on a per‐residue level enabled us to identify residues that contribute significantly to the instability and thus demonstrating how our analysis can be used in a mutant case study.  相似文献   

9.
10.
Alkylation of guanine at the O6 atom is a highly mutagenic DNA lesion because it alters the coding specificity of the base causing G:C to A:T transversion mutations. Specific DNA repair enzymes, e.g. O6‐alkylguanin‐DNA‐Transferases (AGT), recognize and repair such damage after looping out the damaged base to transfer it into the enzyme active site. The exact mechanism how the repair enzyme identifies a damaged site within a large surplus of undamaged DNA is not fully understood. The O6‐alkylation of guanine may change the deformability of DNA which may facilitate the initial binding of a repair enzyme at the damaged site. In order to characterize the effect of O6‐methyl‐guanine (O6‐MeG) containing base pairs on the DNA deformability extensive comparative molecular dynamics (MD) simulations on duplex DNA with central G:C, O6‐MeG:C or O6‐MeG:T base pairs were performed. The simulations indicate significant differences in the helical deformability due to the presence of O6‐MeG compared to regular undamaged DNA. This includes enhanced base pair opening, shear and stagger motions and alterations in the backbone fine structure caused in part by transient rupture of the base pairing at the damaged site and transient insertion of water molecules. It is likely that the increased opening motions of O6‐MeG:C or O6‐MeG:T base pairs play a decisive role for the induced fit recognition or for the looping out of the damaged base by repair enzymes. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 23–32, 2015.  相似文献   

11.
The equilibrium properties of a HIV‐1‐protease precursor are studied by means of an efficient molecular dynamics scheme, which allows for the simulation of the folding of the protein monomers and their dimerization into an active form and compare them with those of the mature protein. The results of the model provide, with atomic detail, an overall account of several experimental findings, including the NMR conformation of the mature dimer, the calorimetric properties of the system, the effects of the precursor tail on the dimerization constant, the secondary chemical shifts of the monomer, and the paramagnetic relaxation enhancement data associated with the conformations of the precursor. It is found that although the mature protein can dimerize in a unique, single way, the precursor populates several dimeric conformations in which monomers are always native‐like, but their binding can be non‐native. Proteins 2014; 82:633–639. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
ATP-Binding cassette (ABC) transporters play an extensive role in the translocation of diverse sets of biologically important molecules across membrane. EchnocandinB (antifungal) and EcdL protein of Aspergillus rugulosus are encoded by the same cluster of genes. Co-expression of EcdL and echinocandinB reflects tightly linked biological functions. EcdL belongs to Multidrug Resistance associated Protein (MRP) subfamily of ABC transporters with an extra transmembrane domain zero (TMD0). Complete structure of MRP subfamily comprising of TMD0 domain, at atomic resolution is not known. We hypothesized that the transportation of echonocandinB is mediated via EcdL protein. Henceforth, it is pertinent to know the topological arrangement of TMD0, with other domains of protein and its possible role in transportation of echinocandinB. Absence of effective template for TMD0 domain lead us to model by I-TASSER, further structure has been refined by multiple template modelling using homologous templates of remaining domains (TMD1, NBD1, TMD2, NBD2). The modelled structure has been validated for packing, folding and stereochemical properties. MD simulation for 0.1 μs has been carried out in the biphasic environment for refinement of modelled protein. Non-redundant structures have been excavated by clustering of MD trajectory. The structural alignment of modelled structure has shown Z-score -37.9; 31.6, 31.5 with RMSD; 2.4, 4.2, 4.8 with ABC transporters; PDB ID 4F4C, 4M1 M, 4M2T, respectively, reflecting the correctness of structure. EchinocandinB has been docked to the modelled as well as to the clustered structures, which reveals interaction of echinocandinB with TMD0 and other TM helices in the translocation path build of TMDs.  相似文献   

13.
Poly(amidoamine) (PAMAM) dendrimers are promising nanocarriers that can enhance the solubility of hydrophobic drugs. The surface chemistry of dendrimers is of great relevance as end groups of these nanocarriers can be easily modified to improve the bioavailability and sustained release of the cargo. Therefore, a molecular‐level understanding of the host‐guest interactions that can give both qualitative and quantitative information is particularly desirable. In this work, fully atomistic molecular dynamics simulations were used to study the association of a bioactive natural product, ie, chalcone, with amine‐, acetyl‐, and carboxyl‐terminated PAMAM dendrimers at physiological and acidic pH environments. Amine‐ and carboxyl‐terminated PAMAM dendrimers have an open microstructure at low pH that is not able to hold the ligand tightly, resulting in an unfavorable encapsulation of the chalcone molecule. In the case of acetyl‐terminated dendrimer, chalcone molecule diffuses out of the dendritic cavities a few times during the simulation time and prefers to locate close to the surface of dendrimer. Average center of mass distance values at neutral pH showed that the chalcone molecule bounds firmly in the internal pockets of amine‐, acetyl‐, and carboxyl‐terminated dendrimers and forms stable complexes with these nanovectors. The potential of mean force calculations showed that the release of the ligand from the dendrimers occurs at a controlled rate in the body.  相似文献   

14.
The composition of the outer membrane in Gram‐negative bacteria is asymmetric, with the lipopolysaccharides found in the outer leaflet and phospholipids in the inner leaflet. The MlaC protein transfers phospholipids from the outer to inner membrane to maintain such lipid asymmetry in the Mla pathway. In this work, we have performed molecular dynamics simulations on apo and phospholipid‐bound systems to study the dynamical properties of MlaC. Our simulations show that the phospholipid forms hydrophobic interactions with the protein. Residues surrounding the entrance of the binding site exhibit correlated motions to control the site opening and closing. Lipid binding leads to increase of the binding pocket volume and precludes entry of the water molecules. However, in the absence of the phospholipid, water molecules can freely move in and out of the binding site when the pocket is open. Dehydration occurs when the pocket closes. This study provides dynamic information of the MlaC protein and may facilitate the design of antibiotics against the Mla pathway of Gram‐negative bacteria.  相似文献   

15.
The recovery stroke is a key step in the functional cycle of muscle motor protein myosin, during which pre-recovery conformation of the protein is changed into the active post-recovery conformation, ready to exersice force. We study the microscopic details of this transition using molecular dynamics simulations of atomistic models in implicit and explicit solvent. In more than 2 μs of aggregate simulation time, we uncover evidence that the recovery stroke is a two-step process consisting of two stages separated by a time delay. In our simulations, we directly observe the first stage at which switch II loop closes in the presence of adenosine triphosphate at the nucleotide binding site. The resulting configuration of the nucleotide binding site is identical to that detected experimentally. Distribution of inter-residue distances measured in the force generating region of myosin is in good agreement with the experimental data. The second stage of the recovery stroke structural transition, rotation of the converter domain, was not observed in our simulations. Apparently it occurs on a longer time scale. We suggest that the two parts of the recovery stroke need to be studied using separate computational models.  相似文献   

16.
Recognition of Ras by its downstream target Raf is mediated by a Ras-recognition region in the Ras-binding domain (RBD) of Raf. Residues 78–89 in this region occupy two different conformations in the ensemble of NMR solution structures of the RBD: a fully α-helical one, and one where 87–90 form a type IV β-turn. Molecular dynamics simulations of the RBD in solution were performed to explore the stability of these and other possible conformations of both the wild-type RBD and the R89K mutant, which does not bind Ras. The simulations sample a fully helical conformation for residues 78–89 similar to the NMR helical structures, a conformation where 85–89 form a 310-helical turn, and a conformation where 87–90 form a type I |iB-turn, whose free energies are all within 0.3 kcal/mol of each other. NOE patterns and Hα chemical shifts from the simulations are in reasonable agreement with experiment. The NMR turn structure is calculated to be 3 kcal/mol higher than the three above conformations. In a simulation with the same implicit solvent model used in the NMR structure generation, the turn conformation relaxes into the fully helical conformation, illustrating possible structural artifacts introduced by the implicit solvent model. With the Raf R89K mutant, simulations sample a fully helical and a turn conformation, the turn being 0.9 kcal/mol more stable. Thus, the mutation affects the population of RBD conformations, and this is expected to affect Ras binding. For example, if the fully helical conformation of residues 78–89 is required for binding, its free energy increase in R89K will increase the binding free energy by about 0.6 kcal/mol. Proteins 31:186–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
GlcV is the nucleotide binding domain of the ABC-type glucose transporter of the hyperthermoacidophile Sulfolobus solfataricus. GlcV consists of two domains, an N-terminal domain containing the typical nucleotide binding-fold and a C-terminal β-barrel domain with unknown function. The unfolding and structural stability of the wild-type (wt) protein and three mutants that are blocked at different steps in the ATP hydrolytic cycle were studied. The G144A mutant is unable to dimerize, while the E166A and E166Q mutants are defective in ATP hydrolysis and dimer dissociation. Unfolding of the wt GlcV and G144A GlcV occurred with a single transition, whereas the E166A and E166Q mutants showed a second transition at a higher melting temperature indicating an increased stability of the ABCα/β subdomain. The structural stability of GlcV was increased in the presence of nucleotides suggesting that the transition corresponds to the unfolding of the NBD domain. Unfolding of the C-terminal domain appears to occur at temperatures above the unfolding of the NBD which coincides with the aggregation of the protein. Analysis of the domain organization of GlcV by trypsin digestion demonstrates cleavage of the NBD domain into three fragments, while nucleotides protect against proteolysis. The cleaved GlcV protein retained the ability to bind nucleotides and to dimerize. These data indicate that the wt GlcV NBD domain unfolds as a single domain protein, and that its stability is modified by mutations in the glutamate after the Walker B motif and by nucleotide binding.  相似文献   

18.
Muscle contraction is caused by directed movement of myosin heads along actin filaments. This movement is triggered by ATP hydrolysis, which occurs within the motor domain of myosin. The mechanism for this intramolecular process remains unknown owing to a lack of ways to observe the detailed motions of each atom in the myosin molecule. We carried out 10-ns all-atom molecular dynamics simulations to investigate the types of dynamic conformational changes produced in the motor domain by the energy released from ATP hydrolysis. The results revealed that the thermal fluctuations modulated by perturbation of ATP hydrolysis are biased in one direction that is relevant to directed movement of the myosin head along the actin filament.  相似文献   

19.
20.
c-Met kinase has been considered as an attractive target for developing antitumor agents. The strong interactions between Tyr1230 and the inhibitors emphasized its importance for ligand binding. The clinically related Tyr1230 mutations have made negative impacts on current c-Met kinase inhibitors, especially the exquisitely selective ones, like PF-04217903, while the multi-targeted inhibitors, like Crizotinib, were not affected so much. In this study, the protein–ligand interactions between c-Met kinase domain (wild, Y1230C and Y1230H) and these inhibitors were compared. The binding site was expanded and the post-mutated regions became solvent accessible. The heavy dependency of PF-04217903 on the interactions with Tyr1230 resulted in the steep decrease of its potency against the Y1230 mutants. It was found that the ligand entrance region contributed consistently to the binding of Crizotinib, but not PF-04217903. Additional groups substituted in the ligand entrance region with stable interactions should be beneficial for improving the inhibitory activity of PF-04217903 against the Y1230 mutants. These findings will facilitate the discovery of potent inhibitors against Y1230 mutated c-Met kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号