首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FKBP52   总被引:5,自引:0,他引:5  
The large molecular-weight immunophilin, FKBP52, is a known target of the immunosuppressive drug FK506. FKBP52 exhibits peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is inhibited by the binding of FK506--properties that it shares with the smaller but better-studied immunophilin, FKBP12. Unlike FKBP12, however, FKBP52 does not mediate the immunosuppressive actions of FK506 and, due to its larger size, contains additional numerous functional domains. One such structure is a series of tetratricopeptide repeat (TPR) domains, which serve as binding sites for the ubiquitous and abundant molecular chaperone, Hsp90. It is this property as a TPR protein that best characterizes the known cellular roles of FKBP52. Here, we review the structural features of FKBP52 and relate them to the evolving and diverse functions of this protein. Although the most recognized role of FKBP52 is in regulation of steroid receptor signaling, other less well-known functions are also discussed.  相似文献   

2.
Levels of autophagy markers rise upon treatment of cells with antidepressants. However, it was not known whether this phenomenon might be linked to other antidepressant pathways or to any physiological effect. In this punctum, we summarize and discuss our recent findings that provide evidence for a role of the cochaperone FKBP5/FKBP51 (FK506 binding protein 5) in autophagy as a prerequisite for antidepressant action in cells, mice, and humans. FKBP5 associates with BECN1, changes its phosphorylation and protein levels and enhances markers of autophagy and autophagic flux. The effects of antidepressants on autophagy as well as their physiological effects in mice and human depend on FKBP5.  相似文献   

3.
Peptidylprolyl-isomerases (PPIases) comprise of the protein families of FK506 binding proteins (FKBPs), cyclophilins, and parvulins. Their common feature is their ability to expedite the transition of peptidylprolyl bonds between the cis and the trans conformation. Thus, it seemed highly plausible that PPIase enzymatic activity is crucial for protein folding. However, this has been difficult to prove over the decades since their discovery. In parallel, more and more studies have discovered scaffolding functions of PPIases. This essay discusses the hypothesis that PPIase enzymatic activity might be the consequence of binding to peptidylprolyl protein motifs. The main focus of this paper is the large immunophilins FKBP51 and FKBP52, but other PPIases such as cyclophilin A and Pin1 are also described. From the hypothesis, it follows that the PPIase activity of these proteins might be less relevant, if at all, than the organization of protein complexes through versatile protein binding. Also see the video abstract here https://youtu.be/A33la0dx5LE .  相似文献   

4.
Hsp90 assembles with steroid receptors and other client proteins in association with one or more Hsp90-binding cochaperones, some of which contain a common tetratricopeptide repeat (TPR) domain. Included in the TPR cochaperones are the Hsp70-Hsp90-organizing protein Hop, the FK506-binding immunophilins FKBP52 and FKBP51, the cyclosporin A-binding immunophilin CyP40, and protein phosphatase PP5. The TPR domains from these proteins have similar x-ray crystallographic structures and target cochaperone binding to the MEEVD sequence that terminates Hsp90. However, despite these similarities, the TPR cochaperones have distinctive properties for binding Hsp90 and assembling with Hsp90.steroid receptor complexes. To identify structural features that differentiate binding of FKBP51 and FKBP52 to Hsp90, we generated an assortment of truncation mutants and chimeras that were compared for coimmunoprecipitation with Hsp90. Although the core TPR domain (approximately amino acids 260-400) of FKBP51 and FKBP52 is required for Hsp90 binding, the C-terminal 60 amino acids (approximately 400-end) also influence Hsp90 binding. More specifically, we find that amino acids 400-420 play a critical role for Hsp90 binding by either FKBP. Within this 20-amino acid region, we have identified a consensus sequence motif that is also present in some other TPR cochaperones. Additionally, the final 30 amino acids of FKBP51 enhance binding to Hsp90, whereas the corresponding region of FKBP52 moderates binding to Hsp90. Taking into account the x-ray crystal structure for FKBP51, we conclude that the C-terminal regions of FKBP51 and FKBP52 outside the core TPR domains are likely to assume alternative conformations that significantly impact Hsp90 binding.  相似文献   

5.
The immunosuppressive drugs FK506 and cyclosporin A block T-lymphocyte proliferation by inhibiting calcineurin, a critical signaling molecule for activation. Multiple intracellular receptors (immunophilins) for these drugs that specifically bind either FK506 and rapamycin (FK506-binding proteins [FKBPs]) or cyclosporin A (cyclophilins) have been identified. We report the cloning and characterization of a new 51-kDa member of the FKBP family from murine T cells. The novel immunophilin, FKBP51, is distinct from the previously isolated and sequenced 52-kDa murine FKBP, demonstrating 53% identity overall. Importantly, Western blot (immunoblot) analysis showed that unlike all other FKBPs characterized to date, FKBP51 expression was largely restricted to T cells. Drug binding to recombinant FKBP51 was demonstrated by inhibition of peptidyl prolyl isomerase activity. As judged from peptidyl prolyl isomerase activity, FKBP51 had a slightly higher affinity for rapamycin than for FK520, an FK506 analog. FKBP51, when complexed with FK520, was capable of inhibiting calcineurin phosphatase activity in an in vitro assay system. Inhibition of calcineurin phosphatase activity has been implicated both in the mechanism of immunosuppression and in the observed toxic side effects of FK506 in nonlymphoid cells. Identification of a new FKBP that can mediate calcineurin inhibition and is restricted in its expression to T cells suggests that new immunosuppressive drugs may be identified that, by virtue of their specific interaction with FKBP51, would be targeted in their site of action.  相似文献   

6.
Plasmodium falciparum FK506‐binding protein 35 (PfFKBP35) that binds to FK506 contains a conserved tetratricopeptide repeat (TPR) domain. Several known TPR domains such as Hop, PPP5, CHIP, and FKBP52 are structurally conserved and are able to interact with molecular chaperones such as Hsp70/Hsp90. Here, we present the crystal structure of PfFKBP35‐TPR and demonstrate its interaction with Hsp90 C‐terminal pentapeptide (MEEVD) by surface plasmon resonance and nuclear magnetic resonance spectroscopy‐based binding studies. Our sequence and structural analyses reveal that PfFKBP35 is similar to Hop and PPP5 in possessing all the conserved residues which are important for carboxylate clamping with Hsp90. Mutational studies were carried out on positively charged clamp residues that are crucial for binding to carboxylate groups of aspartate, showing that all the mutated residues are important for Hsp90 binding. Molecular docking and electrostatic calculations demonstrated that the MEEVD peptide of Hsp90 can form aspartate clamp unlike FKBP52. Our results provide insightful information and structural basis about the molecular interaction between PfFKBP35‐TPR and Hsp90.  相似文献   

7.
Neye H 《Regulatory peptides》2001,97(2-3):147-152
Immunophilins are known as intracellular receptors for the immunosuppressant drugs, cyclosporin A, FK506, and rapamycin. They can be divided into two groups, cyclophilins that bind cyclosporin A and FK506 binding proteins (FKBPs) that bind FK506 and rapamycin. Many efforts were made to elucidate the physiological role of the immunophilins. Many of them are involved in intracellular signalling as they bind to calcium channels or to steroid receptor complexes. A yeast two-hybrid screen was used to identify further target proteins that interact with known proteins. Recently, a 48-kDa FKBP associated protein (FAP48) was isolated that binds to FKBP12 and FKBP52. Binding of FAP48 to FKBPs is inhibited by the macrolide FK506 indicating that the binding sites on the immunophilins coincide with the binding site for FK506. A peptidyl-prolyl motif on FAP48 should be responsible for the binding of the protein to FKBPs. We sequentially point mutated proline sites on FAP48 and checked the mutant proteins for interaction with FKBP12 and FKBP52. Mutation of proline 219 to alanine leads to a loss of interaction indicating that a cysteinyl prolyl site might be responsible for the binding of FAP48 to FKBPs. Thus we identified proline 219 being essential for the interaction.  相似文献   

8.
9.
Mitophagy, the selective removal of damaged or excess mitochondria by autophagy, is an important process in cellular homeostasis. The outer mitochondrial membrane (OMM) proteins NIX, BNIP3, FUNDC1, and Bcl2‐L13 recruit ATG8 proteins (LC3/GABARAP) to mitochondria during mitophagy. FKBP8 (also known as FKBP38), a unique member of the FK506‐binding protein (FKBP) family, is similarly anchored in the OMM and acts as a multifunctional adaptor with anti‐apoptotic activity. In a yeast two‐hybrid screen, we identified FKBP8 as an ATG8‐interacting protein. Here, we map an N‐terminal LC3‐interacting region (LIR) motif in FKBP8 that binds strongly to LC3A both in vitro and in vivo. FKBP8 efficiently recruits lipidated LC3A to damaged mitochondria in a LIR‐dependent manner. The mitophagy receptors BNIP3 and NIX in contrast are unable to mediate an efficient recruitment of LC3A even after mitochondrial damage. Co‐expression of FKBP8 with LC3A profoundly induces Parkin‐independent mitophagy. Strikingly, even when acting as a mitophagy receptor, FKBP8 avoids degradation by escaping from mitochondria. In summary, this study identifies novel roles for FKBP8 and LC3A, which act together to induce mitophagy.  相似文献   

10.
Dengue is one of the most infectious viral diseases prevalent mainly in tropical countries. The virus is transmitted by Aedes species of mosquito, primarily Aedes aegypti. Dengue remains a challenging drug target for years as the virus eludes the immune responses. Currently, no vaccines or antiviral drugs are available for dengue prevention. Previous studies suggested that the immunosuppressive drug FK506 shows antimalarial activity, and its molecular target, FK506‐binding protein (FKBP), was identified in the Plasmodium parasite. Likewise, a FKBP family protein has been identified in A. aegypti (AaFKBP12) in which AaFKBP12 is assumed to play a similar role in its life cycle. FKBPs belong to a highly conserved class of proteins and are considered as an attractive pharmacological target. Herein, we present a high‐resolution crystal structure of AaFKBP12 at 1.3 Å resolution and discuss its structural features throwing light in facilitating the design of potential antagonists against the dengue‐transmitting mosquito.  相似文献   

11.
12.
13.
Functional maturation of steroid hormone receptors requires ordered assembly into a large multichaperone complex consisting of receptor monomer, an Hsp90 dimer, the p23 cochaperone, and an FK506-binding protein (FKBP) family member or alternate peptidylprolyl isomerase-related cochaperone. Previous cellular studies demonstrated that FKBP52 can potentiate receptor function. These results have been confirmed in fkbp4 gene knockout mice in which males are partially androgen insensitive and females display characteristics of progesterone insensitivity. Conversely, FKBP51, which has a high degree of similarity to FKBP52, antagonizes FKBP52-mediated potentiation. Both proteins consist of three domains: two FKBP12-like domains termed FK1 and FK2 and a tetratricopeptide repeat domain that targets binding to Hsp90. To help understand why the two FKBPs behave differently and to gain insight into FKBP52 potentiation activity, we have analyzed the loop structure that links FK1 and FK2. Within the FK linker of FKBP52 is the sequence TEEED, which forms a consensus casein kinase II phosphorylation site; the corresponding sequence in FKBP51 is FED. We demonstrate that the distinct FK linker sequences per se do not account for lack of potentiation activity by FKBP51. However, phosphorylation of the FK linker appears to be an important regulatory determinant of FKBP52-mediated potentiation of steroid receptor activity.  相似文献   

14.
Mean field analysis of FKBP12 complexes with FK506 and rapamycin has been performed by using structures obtained from molecular docking simulations on a simple, yet robust molecular recognition energy landscape. When crystallographic water molecules are included in the simulations as an extension of the FKBP12 protein surface, there is an appreciable stability gap between the energy of the native FKBP12–FK506 complex and energies of conformations with the “native-like” binding mode. By contrast, the energy spectrum of the FKBP12–rapamycin complex is dense regardless of the presence of the water molecules. The stability gap in the FKBP12–FK506 system is determined by two critical water molecules from the effector region that participate in a network of specific hydrogen bond interactions. This interaction pattern protects the integrity and precision of the composite ligand-protein effector surface in the binary FKBP12–FK506 complex and is preserved in the crystal structure of the FKBP12–FK506–calcineurin ternary complex. These features of the binding energy landscapes provide useful insights into specific and nonspecific aspects of FK506 and rapamycin recognition. Proteins 28:313–324, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
A binding assay was developed for measuring the affinity of FKBP12 ligands. A biotinylation signal sequence was fused to the 5' end of the human FKBP12 gene, and the fusion protein was expressed in Escherichia coli with biotin ligase. The fusion protein was immobilized in avidin-coated multiwell plates, and varying concentrations of test ligands were allowed to compete with [3H]FK506 for FKBP12 sites on the plate. The assay provided Kd values for FK520, 32-hydroxyethyl indolyl FK520, and 18-ene, 20-oxa FK520 that are in agreement with previously reported values. The assay provides a convenient and rapid method for the assessment of FKBP12 binding by small molecules.  相似文献   

16.
Human FKBP25 (hFKBP25) is a nuclear immunophilin and interacts with several nuclear proteins, hence involving in many nuclear events. Similar to other FKBPs, FK506 binding domain (FKBD) of hFKBP25 also binds to immunosuppressive drugs such as rapamycin and FK506, albeit with a lower affinity for the latter. The molecular basis underlying this difference in affinity could not be addressed due to the lack of the crystal structure of hFKBD25 in complex with FK506. Here, we report the crystal structure of hFKBD25 in complex with FK506 determined at 1.8 Å resolution and its comparison with the hFKBD25–rapamycin complex, bringing out the microheterogeneity in the mode of interaction of these drugs, which could possibly explain the lower affinity for FK506.  相似文献   

17.
18.
Abstract

The FK506-binding protein 51 (FKBP51) is a cochaperone that modulates the signal transduction of steroid hormone receptors and has been involved in prostate cancer, indicating that FKBP51 is an attractive target of drug design curing the related cancers. In this work, multiple short molecular dynamics (MSMD) simulations are combined with MM-GBSA method to investigate binding modes of inhibitors 3JP, 3JR and 3JQ to FKBP51. The results show that the substitutions of diols (R)-19 and (S)-19 at the R position of 3JP strengthen binding of 3JR and 3JQ to FKBP51. Principal component (PC) analysis performed on the equilibrated MSMD trajectories suggests that three inhibitor bindings produce significant effect on dynamics behavior and conformational changes of the loops L1, L2 and the domain β-L-α-L-β in FKBP51. The calculations of residue-based free energy decomposition not only recognize the hot interaction spot of inhibitors with FKBP51, but also display that the substitutions of diols (R)-19 and (S)-19 at the R position of 3JP play significant role in stronger binding of 3JR and 3JQ to FKBP51 than 3JP. This work is expected to provide theoretical hints and molecular mechanism for design of highly efficient inhibitors toward FKBP51.  相似文献   

19.
The human Hsp90 co-chaperone FKBP52 belongs to the family of FK506-binding proteins, which act as peptidyl-prolyl isomerases. FKBP52 specifically enhances the signaling of steroid hormone receptors, modulates ion channels and regulates neuronal outgrowth dynamics. In turn, small-molecule ligands of FKBP52 have been suggested as potential neurotrophic or anti-prostate cancer agents. The usefulness of available ligands is however limited by a lack of selectivity. The immunophilin FKBP52 is composed of three domains, an FK506-binding domain with peptidyl-prolyl isomerase activity, an FKBP-like domain of unknown function and a TPR-clamp domain, which recognizes the C-terminal peptide of Hsp90 with high affinity. The herein reported crystal structures of FKBP52 reveal that the short linker connecting the FK506-binding domain and the FKBP-like domain acts as a flexible hinge. This enhanced flexibility and its modulation by phosphorylation might explain some of the functional antagonism between the closely related homologs FKBP51 and FKBP52. We further present two co-crystal structures of FKBP52 in complex with the prototypic ligand FK506 and a synthetic analog thereof. These structures revealed the molecular interactions in great detail, which enabled in-depth comparison with the corresponding complexes of the other cytosolic FKBPs, FKBP51 and FKBP12. The observed subtle differences provide crucial insights for the rational design of ligands with improved selectivity for FKBP52.  相似文献   

20.
We present a study of FKBP12/FK506 using an electron structure calculation. These calculations employ a novel technique called eCADD on the protein’s full electron structure along with its hydrophobic pocket and the frontier-orbital-perturbation theory. We first obtain the energy bands and orbital coefficients of protein FKBP12. On this basis, we found that the activity atoms and activity residues of FKBP12 were in good agreement with X-ray crystallography experiments. The results indicate that the interactions occur only between the LUMOs of FKBP12 and the HOMO of FK506, not between the HOMOs of FKBP12 and the LUMO of FK506. In other words, the activity sites of protein FKBP12 are located on its LUMOs, not HOMOs. The electron structures of FKBP12/FK506 give us a clearer understanding of their interaction mechanism and will help us design new ligands of FKBP12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号