首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylase kinase (PhK), a 1.3 MDa regulatory enzyme complex in the glycogenolysis cascade, has four copies each of four subunits, (αβγδ)4, and 325 kDa of unique sequence (the mass of an αβγδ protomer). The α, β and δ subunits are regulatory, and contain allosteric activation sites that stimulate the activity of the catalytic γ subunit in response to diverse signaling molecules. Due to its size and complexity, no high resolution structures have been solved for the intact complex or its regulatory α and β subunits. Of PhK's four subunits, the least is known about the structure and function of its largest subunit, α. Here, we have modeled the full‐length α subunit, compared that structure against previously predicted domains within this subunit, and performed hydrogen‐deuterium exchange on the intact subunit within the PhK complex. Our modeling results show α to comprise two major domains: an N‐terminal glycoside hydrolase domain and a large C‐terminal importin α/β‐like domain. This structure is similar to our previously published model for the homologous β subunit, although clear structural differences are present. The overall highly helical structure with several intervening hinge regions is consistent with our hydrogen‐deuterium exchange results obtained for this subunit as part of the (αβγδ)4 PhK complex. Several low exchanging regions predicted to lack ordered secondary structure are consistent with inter‐subunit contact sites for α in the quaternary structure of PhK; of particular interest is a low‐exchanging region in the C‐terminus of α that is known to bind the regulatory domain of the catalytic γ subunit.  相似文献   

2.
The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy‐sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ‐like proteins, plants also encode a hybrid βγ protein that combines the Four‐Cystathionine β‐synthase (CBS)‐domain (FCD) structure in γ subunits with a glycogen‐binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in‐depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast‐containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre‐CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions.  相似文献   

3.
Skeletal muscle phosphorylase kinase (PhK) is a Ca2+-dependent enzyme complex, (αβγδ)4, with the δ subunit being tightly bound endogenous calmodulin (CaM). The Ca2+-dependent activation of glycogen phosphorylase by PhK couples muscle contraction with glycogen breakdown in the “excitation-contraction-energy production triad.” Although the Ca2+-dependent protein-protein interactions among the relevant contractile components of muscle are well characterized, such interactions have not been previously examined in the intact PhK complex. Here we show that zero-length cross-linking of the PhK complex produces a covalent dimer of its catalytic γ and CaM subunits. Utilizing mass spectrometry, we determined the residues cross-linked to be in an EF hand of CaM and in a region of the γ subunit sharing high sequence similarity with the Ca2+-sensitive molecular switch of troponin I that is known to bind actin and troponin C, a homolog of CaM. Our findings represent an unusual binding of CaM to a target protein and supply an explanation for the low Ca2+ stoichiometry of PhK that has been reported. They also provide direct structural evidence supporting co-evolution of the coordinate regulation by Ca2+ of contraction and energy production in muscle through the sharing of a common structural motif in troponin I and the catalytic subunit of PhK for their respective interactions with the homologous Ca2+-binding proteins troponin C and CaM.  相似文献   

4.
Phosphorylase kinase (PhK) integrates hormonal and neuronal signals and is a key enzyme in the control of glycogen metabolism. PhK is one of the largest of the protein kinases and is composed of four types of subunit, with stoichiometry (alphabetagammadelta)(4) and a total MW of 1.3 x 10(6). PhK catalyzes the phosphorylation of inactive glycogen phosphorylase b (GPb), resulting in the formation of active glycogen phosphorylase a (GPa) and the stimulation of glycogenolysis. We have determined the three-dimensional structure of PhK at 22 A resolution by electron microscopy with the random conical tilt method. We have also determined the structure of PhK decorated with GPb at 28 A resolution. GPb is bound toward the ends of each of the lobes with an apparent stoichiometry of four GPb dimers per (alphabetagammadelta)(4) PhK. The PhK/GPb model provides an explanation for the formation of hybrid GPab intermediates in the PhK-catalyzed phosphorylation of GPb.  相似文献   

5.
Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)4 enzyme complex that upon activation by phosphorylation stimulates glycogenolysis. Due to its large size (1.3 MDa), elucidating the structural changes associated with the activation of PhK has been challenging, although phosphoactivation has been linked with an increased tendency of the enzyme's regulatory β‐subunits to self‐associate. Here we report the effect of a peptide mimetic of the phosphoryltable N‐termini of β on the selective, zero‐length, oxidative crosslinking of these regulatory subunits to form β–β dimers in the nonactivated PhK complex. This peptide stimulated β–β dimer formation when not phosphorylated, but was considerably less effective in its phosphorylated form. Because this peptide mimetic of β competes with its counterpart region in the nonactivated enzyme complex in binding to the catalytic γ‐subunit, we were able to formulate a structural model for the phosphoactivation of PhK. In this model, the nonactivated state of PhK is maintained by the interaction between the nonphosphorylated N‐termini of β and the regulatory C‐terminal domains of the γ‐subunits; phosphorylation of β weakens this interaction, leading to activation of the γ‐subunits.  相似文献   

6.
The eyespot apparatus (EA) of Chlamydomonas reinhardtii P. A. Dang. consists of two layers of carotenoid‐rich lipid globules subtended by thylakoids. The outermost globule layer is additionally associated with the chloroplast envelope membranes and the plasma membrane. In a recent proteomic approach, we identified 202 proteins from isolated EAs of C. reinhardtii via at least two peptides, including, for example, structural components, signalling‐related proteins, and photosynthetic‐related membrane proteins. Here, we have analyzed the proteins of the EA with regard to their topological distribution using thermolysin to find out whether the arrangement of globules and membranes provides protection mechanisms for some of them. From about 230 protein spots separated on two‐dimensional gels, the majority were degraded by thermolysin. Five major protein spots were protected against the action of this protease. These proteins and some that were degradable were identified by mass spectrometry. Surprisingly, the thermolysin‐resistant proteins represented the α and β subunits of the soluble CF1 complex of the chloroplast ATP synthase. Degradable proteins included typical membrane proteins like LHCs, demonstrating that thermolysin is not in general sterically prevented by the EA structure from reaching membrane‐associated proteins. A control experiment showed that the CF1 complex of thylakoids is efficiently degraded by thermolysin. Blue native PAGE of thermolysin‐treated EAs followed by SDS‐PAGE revealed that the α and β subunits are present in conjunction with the γ subunit in a thermolysin‐resistant complex. These results provide strong evidence that a significant proportion of these ATP‐synthase subunits have a specialized localization and function within the EA of C. reinhardtii.  相似文献   

7.
Skeletal muscle phosphorylase kinase (PhK) is an (alphabetagammadelta) 4 hetero-oligomeric enzyme complex that phosphorylates and activates glycogen phosphorylase b (GP b) in a Ca (2+)-dependent reaction that couples muscle contraction with glycogen breakdown. GP b is PhK's only known in vivo substrate; however, given the great size and multiple subunits of the PhK complex, we screened muscle extracts for other potential targets. Extracts of P/J (control) and I/lnJ (PhK deficient) mice were incubated with [gamma- (32)P]ATP with or without Ca (2+) and compared to identify potential substrates. Candidate targets were resolved by two-dimensional polyacrylamide gel electrophoresis, and phosphorylated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified by matrix-assisted laser desorption ionization mass spectroscopy. In vitro studies showed GAPDH to be a Ca (2+)-dependent substrate of PhK, although the rate of phosphorylation is very slow. GAPDH does, however, bind tightly to PhK, inhibiting at low concentrations (IC 50 approximately 0.45 microM) PhK's conversion of GP b. When a short synthetic peptide substrate was substituted for GP b, the inhibition was negligible, suggesting that GAPDH may inhibit predominantly by binding to the PhK complex at a locus distinct from its active site on the gamma subunit. To test this notion, the PhK-GAPDH complex was incubated with a chemical cross-linker, and a dimer between the regulatory beta subunit of PhK and GAPDH was formed. This interaction was confirmed by the fact that a subcomplex of PhK missing the beta subunit, specifically an alphagammadelta subcomplex, was unable to phosphorylate GAPDH, even though it is catalytically active toward GP b. Moreover, GAPDH had no effect on the conversion of GP b by the alphagammadelta subcomplex. The interactions described herein between the beta subunit of PhK and GAPDH provide a possible mechanism for the direct linkage of glycogenolysis and glycolysis in skeletal muscle.  相似文献   

8.
Phosphorylase b kinase (PhK) is a key enzyme involved in the conversion of glycogen to glucose in skeletal muscle and ultimately an increase in intracellular ATP. Since apoptosis is an ATP-dependent event, we investigated the regulation of skeletal muscle PhK during apoptosis. Incubation of PhK with purified caspase-3 in vitro resulted in the highly selective cleavage of the regulatory α subunit and resulted in a 2-fold increase in PhK activity. Edman protein sequencing of a stable 72 kD amino-terminal fragment and a 66 kD carboxy-terminal fragment revealed a specific caspase-3 cleavage site within the α subunit at residue 646 (DWMD↓G). Treatment of differentiated C2C12 mouse muscle myoblasts with the inducers of apoptosis staurosporine, TPEN, doxorubicin, or UV irradiation resulted in the disappearance of the α subunit of PhK as determined by immunoblotting, as well as a concurrent increase in caspase-3 activity. Moreover, induction of apoptosis by TPEN resulted in increased phosphorylase activity and sustained ATP levels throughout a 7 h time course. However, induction of apoptosis with staurosporine, also a potent PhK inhibitor, led to a rapid loss in phosphorylase activity and intracellular ATP, suggesting that PhK inhibition by staurosporine impairs the ability of apoptotic muscle cells to generate ATP. Thus, these studies indicate that PhK may be a substrate for caspase regulation during apoptosis and suggest that activation of this enzyme may be important for the generation of ATP during programmed cell death.  相似文献   

9.
Phosphorylase kinase (PhK) is a large hexadecameric complex that catalyzes the phosphorylation and activation of glycogen phosphorylase (GP). It consists in four copies each of a catalytic subunit (gamma) and three regulatory subunits (alpha beta delta). Delta corresponds to endogenous calmodulin, whereas little is known on the molecular architecture of the large alpha and beta subunits, which probably arose from gene duplication. Here, using sensitive methods of sequence analysis, we show that the C-terminal domain (named domain D) of these alpha and beta subunits can be significantly related to calcineurin B-like (CBL) proteins. CBL are members of the EF-hand family that are involved in the regulation of plant-specific kinases of the CIPK/PKS family, and relieve autoinhibition of their target kinases by binding to their regulatory region. The relationship highlighted here suggests that PhK alpha and/or beta domain D may be involved in a similar regulation mechanism, a hypothesis which is supported by the experimental observation of a direct interaction between domain D of PhKalpha and the regulatory region of the Gamma subunit. This finding, together the identification of significant similarities of domain D with the preceding domain C, may help to understand the molecular mechanism by which PhK alpha and/or beta domain D might regulate PhK activity.  相似文献   

10.
Self-association of phosphorylase kinase (PhK) and its interaction with glycogen (M=5500 kDa) and phosphorylase b (Phb) has been studied using analytical ultracentrifugation and turbidimetry under the conditions of molecular crowding arising from the presence of high concentrations of osmolytes. In accordance with the predictions of the molecular crowding theory, trimethylamine N-oxide (TMAO) and betaine greatly favor self-association of PhK induced by Mg2+ and Ca2+ and PhK interaction with glycogen. In contrast, proline suppresses these processes, probably, due to its specific interaction with PhK. All osmolytes tested prevented the complex formation between PhK and its physiological substrate, Phb. The specific interactions of PhK and Phb with glycogen, in the living cell, presumably is a factor allowing the negative effect of crowding on the recognition of Phb by PhK to be overcome.  相似文献   

11.
The influence of ATP on complex formation of phosphorylase kinase (PhK) with glycogen in the presence of Ca(2+) and Mg(2+) has been studied. The initial rate of complex formation decreases with increasing ATP concentration, the dependence of the initial rate on the concentration of ATP having a cooperative character. Formation of the complex of PhK with glycogen in the presence of ATP occurs after a lag period, which increases with increasing ATP concentration. The dependence of the initial rate of complex formation (v) on the concentration of non-hydrolyzed ATP analogue, beta,gamma-methylene-ATP, follows the hyperbolic law. A correlation between PhK-glycogen complex formation and (32)P incorporation catalyzed by PhK itself and by the catalytic subunit of cAMP-dependent protein kinase has been shown. For ADP (the product and allosteric effector of the PhK reaction) the dependence of v on ADP concentration has a complicated form, probably due to the sequential binding of ADP at two allosteric sites on the beta subunit and the active site on the gamma subunit.  相似文献   

12.
The primary objective of this study was to determine whether total biodiversity (γ) is partitioned into within‐community (α) and among‐community (β) components differently for taxonomic and functional organization. I hypothesized that α diversity will contribute more to the functional organization of γ diversity and that β diversity will contribute more to the taxonomic organization of γ diversity. A secondary objective was to determine whether the relationship between taxonomic and functional diversity is scale dependent. Species abundance data was obtained from fisheries surveys conducted by the Texas Parks and Wildlife Dept that focused on least disturbed streams from 11 different ecoregions of Texas, including 62 localities from 18 drainages. Functional and taxonomic organization of assemblages was quantified with two different measures of biodiversity, including richness and the numbers equivalent of Shannon diversity. Scale‐dependent effects on these indices were assessed by multiplicatively partitioning γ into α and β components. The contribution of α and β components to γ diversity differed between functional and taxonomic organization and among different measures of biodiversity. Among‐community components were more influential in structuring the taxonomic organization of stream‐fish assemblages, whereas within‐community components were more important in structuring the functional organization of assemblages. The relationship between taxonomic and functional diversity differed between α and β components and between spatial scales. Indeed, ecological patterns not only change with spatial scale, but how they change is dependent on which aspect of biodiversity is considered.  相似文献   

13.
Skeletal muscle phosphorylase kinase (PhK) is a 1.3-MDa hexadecameric complex that catalyzes the phosphorylation and activation of glycogen phosphorylase b. PhK has an absolute requirement for Ca(2+) ions, which couples the cascade activation of glycogenolysis with muscle contraction. Ca(2+) activates PhK by binding to its nondissociable calmodulin subunits; however, specific changes in the structure of the PhK complex associated with its activation by Ca(2+) have been poorly understood. We present herein the first comparative investigation of the physical characteristics of highly purified hexadecameric PhK in the absence and presence of Ca(2+) ions using a battery of biophysical probes as a function of temperature. Ca(2+)-induced differences in the tertiary and secondary structure of PhK measured by fluorescence, UV absorption, FTIR, and CD spectroscopies as low resolution probes of PhK's structure were subtle. In contrast, the surface electrostatic properties of solvent accessible charged and polar groups were altered upon the binding of Ca(2+) ions to PhK, which substantially affected both its diffusion rate and electrophoretic mobility, as measured by dynamic light scattering and zeta potential analyses, respectively. Overall, the observed physicochemical effects of Ca(2+) binding to PhK were numerous, including a decrease in its electrostatic surface charge that reduced particle mobility without inducing a large alteration in secondary structure content or hydrophobic tertiary interactions. Without exception, for all analyses in which the temperature was varied, the presence of Ca(2+) rendered the enzyme increasingly labile to thermal perturbation.  相似文献   

14.
Heterodimeric integrin adhesion receptors regulate cell migration, survival and differentiation in metazoa by communicating signals bi‐directionally across the plasma membrane. Protein engineering and mutagenesis studies have suggested that the dissociation of a complex formed by the single‐pass transmembrane (TM) segments of the α and β subunits is central to these signalling events. Here, we report the structure of the integrin αIIbβ3 TM complex, structure‐based site‐directed mutagenesis and lipid embedding estimates to reveal the structural event that underlies the transition from associated to dissociated states, that is, TM signalling. The complex is stabilized by glycine‐packing mediated TM helix crossing within the extracellular membrane leaflet, and by unique hydrophobic and electrostatic bridges in the intracellular leaflet that mediate an unusual, asymmetric association of the 24‐ and 29‐residue αIIb and β3 TM helices. The structurally unique, highly conserved integrin αIIbβ3 TM complex rationalizes bi‐directional signalling and represents the first structure of a heterodimeric TM receptor complex.  相似文献   

15.
Voltage‐gated sodium channels are unique in that they combine action potential conduction with cell adhesion. Mammalian sodium channels are heterotrimers, composed of a central, pore‐forming α subunit and two auxiliary β subunits. The α subunits are members of a large gene family containing the voltage‐gated sodium, potassium, and calcium channels. Sodium channel α subunits form a gene subfamily with at least 11 members. Mutations in sodium channel α subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome (LQT), and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode the sodium channel β subunits with at least one alternative splice product. Unlike the pore‐forming α subunits, the sodium channel β subunits are not structurally related to β subunits of calcium and potassium channels. Sodium channel β subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. We have shown that β subunits also function as cell adhesion molecules (CAMs) in terms of interaction with extracellular matrix molecules, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. A mutation in SCN1B has been shown to cause GEFS + 1 epilepsy in human families. We propose that the sodium channel signalling complex at nodes of Ranvier involves β subunits as channel modulators as well as CAMs, other CAMs such as neurofascin and contactin, RPTPβ, and extracellular matrix molecules such as tenascin.  相似文献   

16.
Y H Xu  G M Carlson 《Biochemistry》1999,38(30):9562-9569
A polyclonal antibody was generated against a peptide corresponding to a region opposite the regulatory face of glycogen phosphorylase b (P-b), providing a probe for detecting and quantifying P-b when it is bound to its activating kinase, phosphorylase kinase (PhK). Using both direct and competition enzyme-linked immunosorbent assays (ELISAs), we have measured the extent of direct binding to PhK of various forms of phosphorylase, including different conformers induced by allosteric effectors as well as forms differing at the N-terminal site phosphorylated by PhK. Strong interactions with PhK were observed for both P-b', a truncated form lacking the site for phosphorylation, and P-a, the phosphorylated form of P-b. Further, the binding of P-b, P-b', and P-a was stimulated a similar amount by Mg(2+), or by Ca(2+) (both being activators of PhK). Our results suggest that the presence and conformation of P-b's N-terminal phosphorylation site do not fully account for the protein's affinity for PhK and that regions distinct from that site may also interact with PhK. Direct ELISAs detected the binding of P-b by a truncated form of the catalytic gamma subunit of PhK, consistent with the necessary interaction of PhK's catalytic subunit with its substrate P-b. In contrast, P-b' bound very poorly to the truncated gamma subunit, suggesting that the N-terminal phosphorylatable region of P-b may be critical in directing P-b to PhK's catalytic subunit and that the binding of P-b' by the PhK holoenzyme may involve more than just its catalytic core. The sum of our results suggests that structural features outside the catalytic domain of PhK and outside the phosphorylatable region of P-b may both be necessary for the maximal interaction of these two proteins.  相似文献   

17.
Phosphorylase kinase (PhK) regulates glycogenolysis through its Ca(2+)-dependent phosphorylation and activation of glycogen phosphorylase. The activity of PhK increases dramatically as the pH is raised from 6.8 to 8.2 (denoted as upward arrow pH), but Ca(2+) dependence is retained. Little is known about the structural changes associated with PhK's activation by upward arrow pH and Ca(2+), but activation by both mechanisms is mediated through regulatory subunits of the (alphabetagammadelta)(4) PhK complex. In this study, changes in the structure of PhK induced by upward arrow pH and Ca(2+) were investigated using second derivative UV absorption, synchronous fluorescence, circular dichroism spectroscopy, and zeta potential analyses. The joint effects of Ca(2+) and upward arrow pH on the physicochemical properties of PhK were found to be interdependent, with their effects showing a strong inflection point at pH approximately 7.6. Comparing the properties of the conformers of PhK present under the condition where it would be least active (pH 6.8 - Ca(2+)) versus that where it would be most active (pH 8.2 + Ca(2+)), the joint activation by upward arrow pH and Ca(2+) is characterized by a relatively large increase in the content of sheet structure, a decrease in interactions between helix and sheet structures, and a dramatically less negative electrostatic surface charge. A model is presented that accounts for the interdependent activating effects of upward arrow pH and Ca(2+) in terms of the overall physicochemical properties of the four PhK conformers described herein, and published data corroborating the transitions between these conformers are tabulated.  相似文献   

18.
Phosphorylase kinase (PhK), a Ca(2+)-dependent regulatory enzyme of the glycogenolytic cascade in skeletal muscle, is a 1.3 MDa hexadecameric oligomer comprising four copies of four distinct subunits, termed alpha, beta, gamma, and delta, the last being endogenous calmodulin. The structures of both nonactivated and Ca(2+)-activated PhK were determined to elucidate Ca(2+)-induced structural changes associated with PhK's activation. Reconstructions of both conformers of the kinase, each including over 11,000 particles, yielded bridged, bilobal structures with resolutions estimated by Fourier shell correlation at 24 A using a 0.5 correlation cutoff, or at 18 A by the 3sigma (corrected for D(2) symmetry) threshold curve. Extensive Ca(2+)-induced structural changes were observed in regions encompassing both the lobes and bridges, consistent with changes in subunit interactions upon activation. The relative placement of the alpha, beta, gamma, and delta subunits in the nonactivated three-dimensional structure, relying upon previous two-dimensional localizations, is in agreement with the known effects of Ca(2+) on subunit conformations and interactions in the PhK complex.  相似文献   

19.
Dynamic light scattering was used to study the interaction of phosphorylase kinase (PhK) and glycogen phos-phorylase b (Phb) from rabbit skeletal muscle with glycogen under molecular crowding conditions arising from the presence of 1 M trimethylamine N-oxide and at physiological ionic strength. The mean value of hydrodynamic radius of the initial glycogen particles was 52 nm. Crowding stimulated Phb and PhK combined binding on glycogen particles. Two-stage character of PhK binding to glycogen particles containing adsorbed Phb was found in the presence of the crowding agent. At the initial stage, limited size particles with hydrodynamic radius of ~220 nm are formed, whereas the second stage is accompanied by linear growth of hydrodynamic radius. Flavin adenine dinucleotide (FAD) selectively inhibited PhK binding at the second stage. The data indicate that in the first stage Phb is involved in PhK binding by glycogen particles containing adsorbed Phb, whereas PhK binding in the second stage does not involve Phb.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号