首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Intramolecular electrostatic attraction and repulsion strongly influence the conformational sampling of intrinsically disordered proteins and domains (IDPs). In order to better understand this complex relationship, we have used nuclear magnetic resonance to measure side chain pKa values and pH‐dependent translational diffusion coefficients for the unstructured and highly acidic carboxyl‐terminus of γ‐tubulin (γ‐CT), providing insight into how the net charge of an IDP relates to overall expansion or collapse of the conformational ensemble. Many of the pKa values in the γ‐CT are shifted upward by 0.3–0.4 units and exhibit negatively cooperative ionization pH profiles, likely due to the large net negative charge that accumulates on the molecule as the pH is raised. pKa shifts of this magnitude correspond to electrostatic interaction energies between the affected residues and the rest of the charged molecule that are each on the order of 1 kcal mol?1. Diffusion of the γ‐CT slowed with increasing net charge, indicative of an expanding hydrodynamic radius (rH). The degree of expansion agreed quantitatively with what has been seen from comparisons of IDPs with different charge content, yielding the general trend that every 0.1 increase in relative charge (|Q|/res) produces a roughly 5% increase in rH. While γ‐CT pH titration data followed this trend nearly perfectly, there were substantially larger deviations for the database of different IDP sequences. This suggests that other aspects of an IDP's primary amino acid sequence beyond net charge influence the sensitivity of rH to electrostatic interactions.  相似文献   

2.
The initiation of microtubule assembly within cells is guided by a cone shaped multi‐protein complex, γ‐tubulin ring complex (γTuRC) containing γ‐tubulin and atleast five other γ‐tubulin‐complex proteins (GCPs), i.e., GCP2, GCP3, GCP4, GCP5, and GCP6. The rim of γTuRC is a ring of γ‐tubulin molecules that interacts, via one of its longitudinal interfaces, with GCP2, GCP3, or GCP4 and, via other interface, with α/β?tubulin dimers recruited for the microtubule lattice formation. These interactions however, are not well understood in the absence of crystal structure of functional reconstitution of γTuRC subunits. In this study, we elucidate the atomic interactions between γ‐tubulin and GCP4 through computational techniques. We simulated two complexes of γ‐tubulin‐GCP4 complex (we called dimer1 and dimer2) for 25 ns to obtain a stable complex and calculated the ensemble average of binding free energies of ?158.82 and ?170.19 kcal/mol for dimer1 and ?79.53 and ?101.50 kcal/mol for dimer2 using MM‐PBSA and MM‐GBSA methods, respectively. These highly favourable binding free energy values points to very robust interactions between GCP4 and γ‐tubulin. From the results of the free‐energy decomposition and the computational alanine scanning calculation, we identified the amino acids crucial for the interaction of γ‐tubulin with GCP4, called hotspots. Furthermore, in the endeavour to identify chemical leads that might interact at the interface of γ‐tubulin‐GCP4 complex; we found a class of compounds based on the plant alkaloid, noscapine that binds with high affinity in a cavity close to γ‐tubulin‐GCP4 interface compared with previously reported compounds. All noscapinoids displayed stable interaction throughout the simulation, however, most robust interaction was observed for bromo‐noscapine followed by noscapine and amino‐noscapine. This offers a novel chemical scaffold for γ‐tubulin binding drugs near γ‐tubulin‐GCP4 interface. Proteins 2015; 83:827–843. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The role of phosphorylation in stabilizing the N‐termini of α‐helices is examined using computer simulations of model peptides. The models comprise either a phosphorylated or unphosphorylated serine at the helix N‐terminus, followed by nine alanines. Monte Carlo/stochastic Dynamics simulations were performed on the model helices. The simulations revealed a distinct stabilization of the helical conformation at the N‐terminus after phosphorylation. The stabilization was attributable to favorable electrostatic interactions between the phosphate and the helix backbone. However, direct helix capping by the phosphorylated sidechain was not observed. The results of the calculations are consistent with experimental evidence on the stabilization of helices by phosphates and other anions. © 1999 John Wiley & Sons, Inc. Biopoly 49: 225–233, 1999  相似文献   

4.
Mitotic‐spindle organizing protein associated with a ring of γ‐tubulin 1 (MOZART1) is an 8.5 kDa protein linked to regulation of γ‐tubulin ring complexes (γTuRCs), which are involved in nucleation of microtubules. Despite its small size, MOZART1 represents a challenging target for detailed characterization in vitro. We described herein a protocol for efficient production of recombinant human MOZART1 in Escherichia coli and assessed the properties of the purified protein using a combination of size exclusion chromatography coupled with multiangle light scattering (SEC‐MALS), dynamic light scattering (DLS), and nuclear magnetic resonance (NMR) experiments. MOZART1 forms heterogeneous oligomers in solution. We identified optimal detergent and buffer conditions for recording well resolved NMR experiments allowing nearly full protein assignment and identification of three distinct alpha‐helical structured regions. Finally, using NMR, we showed that MOZART1 interacts with the N‐terminus (residues 1–250) of GCP3 (γ‐tubulin complex protein 3). Our data illustrate the capacity of MOZART1 to form oligomers, promoting multiple contacts with a subset of protein partners in the context of microtubule nucleation.  相似文献   

5.
As an environmentally friendly and industrially useful biopolymer, poly‐γ‐glutamic acid (γ‐PGA) from Bacillus licheniformis CGMCC 2876 was characterized by the high‐resolution mass spectrometry and 1H NMR. A flocculating activity of 11,474.47 U mL?1 obtained with γ‐PGA, and the effects of carbon sources, ions, and chemical properties (D‐/L‐composition and molecular weight) on the production and flocculating activity of γ‐PGA were discussed. Being a bioflocculant in the sugar refinery process, the color and turbidity of the sugarcane juice was IU 1,877.36 and IU 341.41 with 0.8 ppm of γ‐PGA, respectively, which was as good as the most widely used chemically synthesized flocculant in the sugarcane industry—polyacrylamide with 1 ppm. The γ‐PGA produced from B. licheniformis CGMCC 2876 could be a promising alternate of chemically synthesized flocculants in the sugarcane industry. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1287–1294, 2015  相似文献   

6.
The integration protein (IN) of the Prague A strain of Rous sarcoma virus (RSV) was analyzed by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three polypeptides of similar proportions and molecular mass (32 kDa) were immunoprecipitated by an antiserum directed against the first 10 amino acids of the amino terminus of IN. However, the faster-migrating nonphosphorylated polypeptide was not immunoprecipitated by two different polyclonal antisera directed against the last 11 amino acids of the carboxyl terminus of IN. These results suggest that the faster-migrating species was proteolytically processed at its carboxyl terminus. RSV IN is phosphorylated on an S residue located five amino acids from its carboxyl terminus. Two different missense mutations at this S residue resulted in the isolation of slow-growing viable mutants whose phenotypes were stable. Each mutation at residue 282 eliminated both major phosphorylated-Ser-containing tryptic peptides observed with wild-type IN. An S----F mutation resulted in the conversion of all IN polypeptides to one species that was not precipitable by carboxyl-terminal antisera, suggesting that this amino acid transition promoted proteolysis at the carboxyl terminus. An S----D mutation resulted in the recovery of one major (greater than 95%) slower-migrating polypeptide that was immunoprecipitated by carboxyl-terminal antisera, suggesting that this negatively charged D residue (similar to phosphorylated Ser) inhibited proteolysis. Modification of the S residue at amino acid 262 to R had no apparent effect on the proteolytic processing or phosphorylation of IN.  相似文献   

7.
Two analogs of the ten‐amino acid residue, membrane‐active lipopeptaibiotic trichogin GA IV, mono‐labeled with 4‐cyano‐α‐methyl‐L ‐phenylalanine, a potentially useful fluorescence and IR absorption probe of the local microenvironment, were synthesized by the solid‐phase methodology and conformationally characterized. The single modification was incorporated either at the N‐terminus (position 1) or near the C‐terminus (position 8) of the peptide main chain. In both cases, the replaced amino acid was the equally helicogenic α‐aminoisobutyric acid (Aib) residue. We performed a solution conformational analysis by use of FT‐IR absorption, CD, and 2D‐NMR spectroscopies. The results indicate that both labeled analogs essentially maintain the overall helical propensity of the naturally occurring lipopeptaibiotic. Peptide? membrane interactions were assessed by fluorescence and ATR‐IR absorption techniques. Analogies and differences between the two peptides were highlighted. Taken together, our data confirm literature results that some of the spectroscopic parameters of the 4‐cyanobenzyl chromophore are sensitive markers of the local microenvironment.  相似文献   

8.
The four‐subunit protease complex γ‐secretase cleaves many single‐pass transmembrane (TM) substrates, including Notch and β‐amyloid precursor protein to generate amyloid‐β (Aβ), central to Alzheimer's disease. Two of the subunits anterior pharynx‐defective 1 (APH‐1) and presenilin (PS) exist in two homologous forms APH1‐A and APH1‐B, and PS1 and PS2. The consequences of these variations are poorly understood and could affect Aβ production and γ‐secretase medicine. Here, we developed the first complete structural model of the APH‐1B subunit using the published cryo‐electron microscopy (cryo‐EM) structures of APH1‐A (Protein Data Bank: 5FN2, 5A63, and 6IYC). We then performed all‐atom molecular dynamics simulations at 303 K in a realistic bilayer system to understand both APH‐1B alone and in γ‐secretase without and with substrate C83‐bound. We show that APH‐1B adopts a 7TM topology with a water channel topology similar to APH‐1A. We demonstrate direct transport of water through this channel, mainly via Glu84, Arg87, His170, and His196. The apo and holo states closely resemble the experimental cryo‐EM structures with APH‐1A, however with subtle differences: The substrate‐bound APH‐1B γ‐secretase was quite stable, but some TM helices of PS1 and APH‐1B rearranged in the membrane consistent with the disorder seen in the cryo‐EM data. This produces different accessibility of water molecules for the catalytic aspartates of PS1, critical for Aβ production. In particular, we find that the typical distance between the catalytic aspartates of PS1 and the C83 cleavage sites are shorter in APH‐1B, that is, it represents a more closed state, due to interactions with the C‐terminal fragment of PS1. Our structural‐dynamic model of APH‐1B alone and in γ‐secretase suggests generally similar topology but some notable differences in water accessibility which may be relevant to the protein's existence in two forms and their specific function and location.  相似文献   

9.
Poly‐γ‐glutamate (γ‐PGA) has applications in food, medical, cosmetic, animal feed, and wastewater industries. Bacillus subtilis DB430, which possesses the γ‐PGA synthesis ywsC‐ywtAB genes in its chromosome, cannot produce γ‐PGA. An efficient synthetic expression control sequence (SECS) was introduced into the upstream region of the ywtABC genes, and this resulted in γ‐PGA‐producing B. subtilis mutant strains. Mutant B. subtilis PGA6‐2 stably produces high levels of γ‐PGA in medium A without supplementation of extra glutamic acid or ammonium chloride. The mutant B. subtilis PGA 6‐2 is not only a γ‐PGA producer, but it is also a candidate for the genetic and metabolic engineering of γ‐PGA production. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

10.
A variety of lipophilic 2‐oxoamides containing sulfonamide analogs of γ‐amino acids as well as acyl sulfonamides of γ‐aminobutyric acid were synthesized. Their ability to inhibit intracellular GIVA cPLA2 and GVIA iPLA2 as well as secreted GV sPLA2 was evaluated. The sulfonamide group seems a bioisosteric group suitable to replace the carboxyl group in 2‐oxoamide inhibitors of GVIA cPLA2. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The highest certified power conversion efficiency (PCE) of black phase based CsPbI3 perovskite solar cells has exceeded 18%, and become a hotspot in recent progress. However, the black phase of CsPbI3 rapidly transforms to yellow phase in ambient conditions due to its thermodynamic instability. Here, a Ruddlesden–Popper 2D structure is introduced into γ‐CsPbI3 film to stabilize the black phase via reducing dimensionality. It is found that a judicious amount of phenylethylammonium iodide can adjust the dimensionality of γ‐CsPbI3 film from 2D to quasi‐2D and 3D phase. Comprehensive consideration to obtain both the stability and high PCE, quasi‐2D (n = 40) γ‐CsPbI3 delivers a reproducible PCE of 13.65% with negligible hysteresis. By utilizing femtosecond transient absorption and time‐resolved PL decay, similar carrier kinetics in n = 40 and ∞ samples are observed, meaning an efficient charge extraction. More importantly, when the device is placed at 80 °C in N2 condition or in air with RH of 25–30%, its PCE keeps ≈88% and ≈89% of its initial PCE after 12 days, respectively. Such results are better than the 3D one (≈69% and ≈16%, respectively).  相似文献   

12.
The production of recombinant vitamin K dependent (VKD) proteins for therapeutic purposes is an important challenge in the pharmaceutical industry. These proteins are primarily synthesized as precursor molecules and contain pre–propeptide sequences. The propeptide is connected to γ‐carboxylase enzyme through the γ‐carboxylase recognition site for the direct γ‐carboxylation of VKD proteins that has a significant impact on their biological activity. Propeptides have different attitudes toward γ‐carboxylase and certain amino acids in propeptide sequences are responsible for the differences in γ‐carboxylase affinity. By aiming to replace amino acids in hFIX propeptide domain based on the prothrombin propeptide, pMT‐hFIX‐M14 expression cassette, containing cDNA of hFIX with substituted ?14 residues (Asp to Ala) was made. After transfection of Drosophila S2 cells, expression of the active hFIX was analyzed by performing ELISA and coagulation test. A 1.4‐fold increase in the mutant recombinant hFIX expression level was observed in comparison with that of a native recombinant hFIX. The enhanced hFIX activity and specific activity of the hFIXD‐14A (2.2 and 1.6 times, respectively) were further confirmed by comparing coagulation activity levels of substituted and native hFIX. Enrichment for functional, fully γ‐carboxylated hFIX species via barium citrate adsorption demonstrated 2‐fold enhanced recovery in the S2‐expressing hFIXD‐14A relative to that expressed native hFIX. These results show that changing ?14 residues leads to a decrease in the binding affinity to substrate, increase in γ‐carboxylation and activity of recombinant hFIX. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:515–520, 2018  相似文献   

13.
Oligomerization of γ‐Synuclein is known to have implications for both neurodegeneration and cancer. Although it is known to co‐exist with the fibrillar deposits of α‐Synuclein (Lewy bodies), a hallmark in Parkinson's disease (PD), the effect of potential therapeutic modulators on the fibrillation pathway of γ‐Syn remains unexplored. By a combined use of various biophysical tools and cytotoxicity assays we demonstrate that the flavonoid epigallocatechin‐3‐gallate (EGCG) significantly suppresses γ‐Syn fibrillation by affecting its nucleation and binds with the unstructured, nucleus forming oligomers of γ‐Syn to modulate the pathway to form α‐helical containing higher‐order oligomers (~158 kDa and ~ 670 kDa) that are SDS‐resistant and conformationally restrained in nature. Seeding studies reveal that these oligomers although “on‐pathway” in nature, are kinetically retarded and rate‐limiting species that slows down fibril elongation. We observe that EGCG also disaggregates the protofibrils and mature γ‐Syn fibrils into similar SDS‐resistant oligomers. Steady‐state and time‐resolved fluorescence spectroscopy and isothermal titration calorimetry (ITC) reveal a weak non‐covalent interaction between EGCG and γ‐Syn with the dissociation constant in the mM range (Kd ~ 2–10 mM). Interestingly, while EGCG‐generated oligomers completely rescue the breast cancer (MCF‐7) cells from γ‐Syn toxicity, it reduces the viability of neuroblastoma (SH‐SY5Y) cells. However, the disaggregated oligomers of γ‐Syn are more toxic than the disaggregated fibrils for MCF‐7cells. These findings throw light on EGCG‐mediated modulation of γ‐Syn fibrillation and suggest that investigation on the effects of such modulators on γ‐Syn fibrillation is critical in identifying effective therapeutic strategies using small molecule modulators of synucleopathies.  相似文献   

14.
The centrosomal pericentrin‐related proteins play pivotal roles in various aspects of cell division; however their underlying mechanisms remain largely elusive. Here we show that fission‐yeast pericentrin‐like Pcp1 regulates multiple functions of the spindle pole body (SPB) through recruiting two critical factors, the γ‐tubulin complex (γ‐TuC) and polo kinase (Plo1). We isolated two pcp1 mutants (pcp1‐15 and pcp1‐18) that display similar abnormal spindles, but with remarkably different molecular defects. Both mutants exhibit defective monopolar spindle microtubules that emanate from the mother SPB. However, while pcp1‐15 fails to localise the γ‐TuC to the mitotic SPB, pcp1‐18 is specifically defective in recruiting Plo1. Consistently Pcp1 forms a complex with both γ‐TuC and Plo1 in the cell. pcp1‐18 is further defective in the mitotic‐specific reorganisation of the nuclear envelope (NE), leading to impairment of SPB insertion into the NE. Moreover pcp1‐18, but not pcp1‐15, is rescued by overproducing nuclear pore components or advancing mitotic onset. The central role for Pcp1 in orchestrating these processes provides mechanistic insight into how the centrosome regulates multiple cellular pathways.  相似文献   

15.
γ‐Bisabolene, one of main components in cardamom, showed potent in vitro and in vivo anti‐proliferative activities against human oral squamous cell carcinoma (OSCC). γ‐Bisabolene activated caspases‐3/9 and decreased mitochondrial memebrane potential, leading to apoptosis of OSCC cell lines (Ca9‐22 and SAS), but not normal oral fibroblast cells. Phosphoproteome profiling of OSCC cells treated with γ‐bisabolene was identified using TiO2‐PDMS plate and LC‐MS/MS, then confirmed using Western blotting and real‐time RT‐PCR assays. Phosphoproteome profiling revealed that γ‐bisabolene increased the phosphorylation of ERK1/2, protein phosphatases 1 (PP1), and p53, as well as decreased the phosphorylation of histone deacetylase 2 (HDAC2) in the process of apoptosis induction. Protein–protein interaction network analysis proposed the involvement of PP1‐HDAC2‐p53 and ERK1/2‐p53 pathways in γ‐bisabolene‐induced apoptosis. Subsequent assays indicated γ‐bisabolene eliciting p53 acetylation that enhanced the expression of p53‐regulated apoptotic genes. PP1 inhibitor‐2 restored the status of HDAC2 phosphorylation, reducing p53 acetylation and PUMA mRNA expression in γ‐bisabolene‐treated Ca9‐22 and SAS cells. Meanwhile, MEK and ERK inhibitors significantly decreased γ‐bisabolene‐induced PUMA expression in both cancer cell lines. Notably, the results ascertained the involvement of PP1‐HDAC2‐p53 and ERK1/2‐p53 pathways in mitochondria‐mediated apoptosis of γ‐bisabolene‐treated cells. This study demonstrated γ‐bisabolene displaying potent anti‐proliferative and apoptosis‐inducing activities against OSCC in vitro and in vivo, elucidating molecular mechanisms of γ‐bisabolene‐induced apoptosis. The novel insight could be useful for developing anti‐cancer drugs.  相似文献   

16.
Glioblastoma multiforme (GBM) is the most common and deadliest form of primary brain cancer in adults. Despite advances in molecular biology and genetics of cancer there is no currently available treatment for these tumors. Aberrant patterns of γ‐tubulin expression and compartmentalization in GBM have been reported lending credence to the assertion that these changes might underlie perturbations in microtubule nucleation and mitosis associated with glioma tumorigenesis and tumor progression. This minireview focuses on the role of γ‐tubulin in the pathobiology of GBM in the light of emerging concepts concerning the function of γ‐tubulin and its potential role in tumorigenesis putting forward the concept that γ‐tubulin might serve as a novel marker of anaplastic change in gliomas. J. Cell. Physiol. 221: 514–520, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
γ‐Tubulin complex constitutes a key component of the microtubule‐organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ‐tubulin small complex (γTuSC) composed of γ‐tubulin, gamma‐tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ‐tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ‐tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ‐tubulin complex in T. brucei is composed of γ‐tubulin and three GCP proteins, GCP2‐GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ‐tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex.  相似文献   

18.
Aluminium oxide (Al2O3) has widely been used for catalysts, insulators, and composite materials for diverse applications. Herein, we demonstrated if γ‐Al2O3 was useful as a luminescence support material for europium (Eu) (III) activator ion. The hydrothermal method and post‐thermal treatment at 800°C were employed to synthesize Eu(III)‐doped γ‐Al2O3 nanofibre structures. Luminescence characteristics of Eu(III) ions in Al2O3 matrix were fully understood by taking 2D and 3D‐photoluminescence imaging profiles. Various sharp emissions between 580 to 720 nm were assigned to the 5D07FJ (J = 0, 1, 2, 3, 4) transitions of Eu(III) activators. On the basis of X‐ray diffraction crystallography, Auger elemental mapping and the asymmetry ratio, Eu(III) ions were found to be well doped into the γ‐Al2O3 matrix at a low (1 mol%) doping level. A broad emission at 460 nm was substantially increased upon higher (2 mol%) Eu(III) doping due to defect creation. The first 3D photoluminescence imaging profiles highlight detailed understanding of emission characteristics of Eu(III) ions in Al oxide‐based phosphor materials and their potential applications.  相似文献   

19.
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase.  相似文献   

20.
4‐α‐Glucanotransferase (GTase, D ‐enzyme) catalyzes disproportionation between two short polymers of maltooligosaccharides linked by α‐1,4‐glucoside bonds. Using action modes of the potato GTase for the donor and acceptor substrates, the Monte Carlo method was applied to simulate the GTase reaction. The simulation starts from a single enzyme molecule and a finite number (105) of substrate molecules. All selection processes were performed using random numbers produced by computer. The initial substrates were from trimer to 10‐mer. In every case, the final stage was the steady‐state distribution of polymers. The steady‐state distribution by the potato GTase reaction was different from those by the hypothetical random disproportionation reaction. The simulated data from the reaction of potato GTase and trimer almost quantitatively agreed with experimental data. The mechanism of the GTase reaction was accumulation of probabilistic processes and was well simulated by the Monte Carlo method. GTase randomizes the overall distribution of chain length of the substrate. Therefore the GTase reaction is an entropy‐driven process. © 1999 John Wiley & Sons, Inc. Biopoly 50: 145–151, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号