首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins containing the evolutionarily conserved SET domain are involved in regulation of eukaryotic gene expression and chromatin structure through their histone lysine methyltransferase (HMTase) activity. The Drosophila SU(VAR)3-9 protein and related proteins of other organisms have been associated with gene repression and heterochromatinization. In Arabidopsis there are 10 SUVH and 5 SUVR genes encoding proteins similar to SU(VAR)3-9, and 4 SUVH proteins have been shown to control heterochromatic silencing by its HMTase activity and by directing DNA methylation. The SUVR proteins differ from the SUVH proteins in their domain structure, and we show that the closely related SUVR1, SUVR2 and SUVR4 proteins contain a novel domain at their N-terminus, and a SUVR specific region preceding the SET domain. Green fluorescent protein (GFP)-fusions of these SUVR proteins preferably localize to the nucleolus, suggesting involvement in regulation of rRNA expression, in contrast to other SET-domain proteins studied so far. A novel HMTase specificity was demonstrated for SUVR4, in that monomethylated histone H3K9 is its preferred substrate in vitro.  相似文献   

2.
Histone lysine methyltransferases and demethylases in Plasmodium falciparum   总被引:2,自引:0,他引:2  
Dynamic histone lysine methylation, regulated by methyltransferases and demethylases, plays fundamental roles in chromatin structure and gene expression in a wide range of eukaryotic organisms. A large number of SET-domain-containing proteins make up the histone lysine methyltransferase (HKMT) family, which catalyses the methylation of different lysine residues with relatively high substrate specificities. Another large family of Jumonji C (JmjC)-domain-containing histone lysine demethylases (JHDMs) reverses histone lysine methylation with both lysine site and methyl-state specificities. Through bioinformatic analysis, at least nine SET-domain-containing genes were found in the malaria parasite Plasmodium falciparum and its sibling species. Phylogenetic analysis separated these putative HKMTs into five subfamilies with different putative substrate specificities. Consistent with the phylogenetic subdivision, methyl marks were found on K4, K9 and K36 of histone H3 and K20 of histone H4 by site-specific methyl-lysine antibodies. In addition, most SET-domain genes and histone methyl-lysine marks displayed dynamic changes during the parasite asexual erythrocytic cycle, suggesting that they constitute an important epigenetic mechanism of gene regulation in malaria parasites. Furthermore, the malaria parasite and other apicomplexan genomes also encode JmjC-domain-containing proteins that may serve as histone lysine demethylases. Whereas prokaryotic expression of putative active domains of four P. falciparum SET proteins did not yield detectable HKMT activity towards recombinant P. falciparum histones, two protein domains expressed in vitro in a eukaryotic system showed HKMT activities towards H3 and H4, respectively. With the discovery of these Plasmodium SET- and JmjC-domain genes in the malaria parasite genomes, future efforts will be directed towards elucidation of their substrate specificities and functions in various cellular processes of the parasites.  相似文献   

3.
Histone methylation, which is mediated by the histone lysine (K) methyltransferases (HKMTases), is a mechanism associated with many pathways in eukaryotes. Most HKMTases have a conserved SET (Su(var) 3‐9,E(z),Trithorax) domain, while the HKMTases with SET domains are called the SET domain group (SDG) proteins. In plants, only SDG proteins can work as HKMTases. In this review, we introduced the classification of SDG family proteins in plants and the structural characteristics of each subfamily, surmise the functions of SDG family members in plant growth and development processes, including pollen and female gametophyte development, flowering, plant morphology and the responses to stresses. This review will help researchers better understand the SDG proteins and histone methylation in plants and lay a basic foundation for further studies on SDG proteins.  相似文献   

4.
5.
Plant SET domain proteins are known to be involved in the epigenetic control of gene expression during plant development. Here, we report that the Arabidopsis SET domain protein, SDG4, contributes to the epigenetic regulation of pollen tube growth, thus affecting fertilization. Using an SDG4-GFP fusion construct, the chromosomal localization of SDG4 was established in tobacco BY-2 cells. In Arabidopsis, sdg4 knockout showed reproductive defects. Tissue-specific expression analyses indicated that SDG4 is the major ASH1-related gene expressed in the pollen. Immunological analyses demonstrated that SDG4 was involved in the methylation of histone H3 in the inflorescence and pollen grains. The significant reduction in the amount of methylated histone H3 K4 and K36 in sdg4 pollen vegetative nuclei resulted in suppression of pollen tube growth. Our results indicate that SDG4 is capable of modulating the expression of genes that function in the growth of pollen tube by methylation of specific lysine residues of the histone H3 in the vegetative nuclei.  相似文献   

6.
Zhang X  Tamaru H  Khan SI  Horton JR  Keefe LJ  Selker EU  Cheng X 《Cell》2002,111(1):117-127
AdoMet-dependent methylation of histones is part of the "histone code" that can profoundly influence gene expression. We describe the crystal structure of Neurospora DIM-5, a histone H3 lysine 9 methyltranferase (HKMT), determined at 1.98 A resolution, as well as results of biochemical characterization and site-directed mutagenesis of key residues. This SET domain protein bears no structural similarity to previously characterized AdoMet-dependent methyltransferases but includes notable features such as a triangular Zn3Cys9 zinc cluster in the pre-SET domain and a AdoMet binding site in the SET domain essential for methyl transfer. The structure suggests a mechanism for the methylation reaction and provides the structural basis for functional characterization of the HKMT family and the SET domain.  相似文献   

7.
Post‐translational modification of proteins by O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) is catalyzed by O‐GlcNAc transferases (OGTs). O‐GlcNAc modification of proteins regulates multiple important biological processes in metazoans. However, whether protein O‐GlcNAcylation is involved in epigenetic processes during plant development is largely unknown. Here, we show that loss of function of SECRET AGENT (SEC), an OGT in Arabidopsis, leads to an early flowering phenotype. This results from reduced histone H3 lysine 4 trimethylation (H3K4me3) of FLOWERING LOCUS C (FLC) locus, which encodes a key negative regulator of flowering. SEC activates ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), a histone lysine methyltransferase (HKMT), through O‐GlcNAc modification to augment ATX1‐mediated H3K4me3 histone modification at FLC locus. SEC transfers an O‐GlcNAc group on Ser947 of ATX1, which resides in the SET domain, thereby activating ATX1. Taken together, these results uncover a novel post‐translational O‐GlcNAc modification‐mediated mechanism for regulation of HKMT activity and establish the function of O‐GlcNAc signaling in epigenetic processes in plants.  相似文献   

8.
The SET8 histone lysine methyltransferase, which monomethylates the histone 4 lysine 20 residue plays important roles in cell cycle control and genomic stability. By employing peptide arrays we have shown that it has a long recognition sequence motif covering seven amino acid residues, viz. R17–H18–(R19KY)–K20–(V21ILFY)–(L22FY)–R23. Celluspots peptide array methylation studies confirmed specific monomethylation of H4K20 and revealed that the symmetric and asymmetric methylation on R17 of the H4 tail inhibits methylation on H4K20. Similarly, dimethylation of the R located at the −3 position also reduced methylation of p53 K382 which had been shown previously to be methylated by SET8. Based on the derived specificity profile, we identified 4 potential non-histone substrate proteins. After relaxing the specificity profile, we identified several more candidate substrates and showed efficient methylation of 20 novel non-histone peptides by SET8. However, apart from H4 and p53 none of the identified novel peptide targets was methylated at the protein level. Since H4 and p53 both contain the target lysine in an unstructured part of the protein, we conclude that the long recognition sequence of SET8 makes it difficult to methylate a lysine in a folded region of a protein, because amino acid side chains essential for recognition will be buried.  相似文献   

9.
Krajewski WA  Vassiliev OL 《Biochemistry》2012,51(21):4354-4363
Functioning of histone lysine methyltransferases (HKMTs) involves interactions of their catalytic domain "SET" with the N-termini of histone H3. However, these interactions are restricted in canonical nucleosomes due to the limited accessibility of H3 termini. Here we investigated whether nucleosome remodeling with the yeast Isw2 affects nucleosome affinity to the SET domain of ALL-1 HKMT. Reconstitution of mononucleosomes by salt dilutions also produces some nucleosome-dimer particles (self-associated mononucleosomes, described by: Tatchell and van Holde (1977) Biochemistry, 16, 5295-5303). The GST-tagged SET-domain polypeptide of ALL-1 was assayed for binding to assembled mononucleosomes and nucleosome-dimer particles, either intact or remodeled with purified yeast Isw2. Remodeling of mononucleosomes does not noticeably affect their affinity to SET domain; however, yIsw2 remodeling of nucleosome-dimer particles facilitated their association with GST-SET polypeptide. Therefore, it is conceivable that nucleosome interactions in trans could be implicated in the maintenance of chromatin methylation patterns in vivo.  相似文献   

10.
Olivier Binda 《Epigenetics》2013,8(5):457-463
Lysine methylation of histones and non-histone proteins has emerged in recent years as a posttranslational modification with wide-ranging cellular implications beyond epigenetic regulation. The molecular interactions between lysine methyltransferases and their substrates appear to be regulated by posttranslational modifications surrounding the lysine methyl acceptor. Two very interesting examples of this cross-talk between methyl-lysine sites are found in the SET (Su(var)3–9, Enhancer-of-zeste, Trithorax) domain-containing lysine methyltransferases SET7 and SETDB1, whereby the histone H3 trimethylated on lysine 4 (H3K4me3) modification prevents methylation by SETDB1 on H3 lysine 9 (H3K9) and the histone H3 trimethylated on lysine 9 (H3K9me3) modification prevents methylation by SET7 on H3K4. A similar cross-talk between posttranslational modifications regulates the functions of non-histone proteins such as the tumor suppressor p53 and the DNA methyltransferase DNMT1. Herein, in cis effects of acetylation, phosphorylation, as well as arginine and lysine methylation on lysine methylation events will be discussed.  相似文献   

11.
Plants control expression of their genes in a way that involves manipulating the chromatin structural dynamics in order to adapt to environmental changes and carry out developmental processes. Histone modifications like histone methylation are significant epigenetic marks which profoundly and globally modify chromatin, potentially affecting the expression of several genes. Methylation of histones is catalyzed by histone lysine methyltransferases (HKMTs), that features an evolutionary conserved domain known as SET [Su(var)3–9, E(Z), Trithorax]. This methylation is directed at particular lysine (K) residues on H3 or H4 histone. Plant SET domain group (SDG) proteins are categorized into different classes that have been conserved through evolution, and each class have specificity that influences how the chromatin structure operates. The domains discovered in plant SET domain proteins have typically been linked to protein-protein interactions, suggesting that majority of the SDGs function in complexes. Additionally, SDG-mediated histone mark deposition also affects alternative splicing events. In present review, we discussed the diversity of SDGs in plants including their structural properties. Additionally, we have provided comprehensive summary of the functions of the SDG-domain containing proteins in plant developmental processes and response to environmental stimuli have also been highlighted.  相似文献   

12.
13.
The methylation of lysine residues of histones plays a pivotal role in the regulation of chromatin structure and gene expression. Here, we report two crystal structures of SET7/9, a histone methyltransferase (HMTase) that transfers methyl groups to Lys4 of histone H3, in complex with S-adenosyl-L-methionine (AdoMet) determined at 1.7 and 2.3 A resolution. The structures reveal an active site consisting of: (i) a binding pocket between the SET domain and a c-SET helix where an AdoMet molecule in an unusual conformation binds; (ii) a narrow substrate-specific channel that only unmethylated lysine residues can access; and (iii) a catalytic tyrosine residue. The methyl group of AdoMet is directed to the narrow channel where a substrate lysine enters from the opposite side. We demonstrate that SET7/9 can transfer two but not three methyl groups to unmodified Lys4 of H3 without substrate dissociation. The unusual features of the SET domain-containing HMTase discriminate between the un- and methylated lysine substrate, and the methylation sites for the histone H3 tail.  相似文献   

14.
Latent HIV proviruses are silenced as the result of deacetylation and methylation of histones located at the viral long terminal repeat (LTR). Inhibition of histone deacetylases (HDACs) leads to the reemergence of HIV-1 from latency, but the contribution of histone lysine methyltransferases (HKMTs) to maintaining HIV latency remains uncertain. Chromatin immunoprecipitation experiments using latently infected Jurkat T-cell lines demonstrated that the HKMT enhancer of Zeste 2 (EZH2) was present at high levels at the LTR of silenced HIV proviruses and was rapidly displaced following proviral reactivation. Knockdown of EZH2, a key component of the Polycomb repressive complex 2 (PRC2) silencing machinery, and the enzyme which is required for trimethyl histone lysine 27 (H3K27me3) synthesis induced up to 40% of the latent HIV proviruses. In contrast, there was less than 5% induction of latent proviruses following knockdown of SUV39H1, which is required for H3K9me3 synthesis. Knockdown of EZH2 also sensitized latent proviruses to external stimuli, such as T-cell receptor stimulation, and slowed the reversion of reactivated proviruses to latency. Similarly, cell populations that responded poorly to external stimuli carried HIV proviruses that were enriched in H3K27me3 and relatively depleted in H3K9me3. Treating latently infected cells with the HKMT inhibitor 3-deazaneplanocin A, which targets EZH2, led to the reactivation of silenced proviruses, whereas chaetocin and BIX01294 showed only minimal reactivation activities. These findings suggest that PRC2-mediated silencing is an important feature of HIV latency and that inhibitors of histone methylation may play a useful role in induction strategies designed to eradicate latent HIV pools.  相似文献   

15.
SU(VAR)3-9 like histone methyltransferases control heterochromatic domains in eukaryotes. In Arabidopsis, 10 SUVH genes encode SU(VAR)3-9 homologues where SUVH1, SUVH2 and SUVH4 (KRYPTONITE) represent distinct subgroups of SUVH genes. Loss of SUVH1 and SUVH4 causes weak reduction of heterochromatic histone H3K9 dimethylation, whereas in SUVH2 null plants mono- and dimethyl H3K9, mono- and dimethyl H3K27, and monomethyl H4K20, the histone methylation marks of Arabidopsis heterochromatin are significantly reduced. Like animal SU(VAR)3-9 proteins SUVH2 displays strong dosage-dependent effects. Loss of function suppresses, whereas overexpression enhances, gene silencing, causes ectopic heterochromatization and significant growth defects. Furthermore, modification of transgene silencing by SUVH2 is partially transmitted to the offspring plants. This epigenetic stability correlates with heritable changes in DNA methylation. Mutational dissection of SUVH2 indicates an implication of its N-terminus and YDG domain in directing DNA methylation to target sequences, a prerequisite for consecutive histone methylation. Gene silencing by SUVH2 depends on MET1 and DDM1, but not CMT3. In Arabidopsis, SUVH2 with its histone H3K9 and H4K20 methylation activity has a central role in heterochromatic gene silencing.  相似文献   

16.
Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.  相似文献   

17.
Heterochromatin protein 1 (HP1) proteins, recognized readers of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me), are important regulators of heterochromatin-mediated gene silencing and chromosome structure. In Drosophila melanogaster three histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9: Su(var)3-9, Setdb1, and G9a. To probe the dependence of HP1a binding on H3K9me, its dependence on these three HKMTs, and the division of labor between the HKMTs, we have examined correlations between HP1a binding and H3K9me patterns in wild type and null mutants of these HKMTs. We show here that Su(var)3-9 controls H3K9me-dependent binding of HP1a in pericentromeric regions, while Setdb1 controls it in cytological region 2L:31 and (together with POF) in chromosome 4. HP1a binds to the promoters and within bodies of active genes in these three regions. More importantly, however, HP1a binding at promoters of active genes is independent of H3K9me and POF. Rather, it is associated with heterochromatin protein 2 (HP2) and open chromatin. Our results support a hypothesis in which HP1a nucleates with high affinity independently of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites.  相似文献   

18.
Epigenetic gene silencing suppresses transposon activity and is critical for normal development . Two common epigenetic gene-silencing marks are DNA methylation and histone H3 lysine 9 dimethylation (H3K9me2). In Arabidopsis thaliana, H3K9me2, catalyzed by the methyltransferase KRYPTONITE (KYP/SUVH4), is required for maintenance of DNA methylation outside of the standard CG sequence context. Additionally, loss of DNA methylation in the met1 mutant correlates with a loss of H3K9me2. Here we show that KYP-dependent H3K9me2 is found at non-CG methylation sites in addition to those rich in CG methylation. Furthermore, we show that the SRA domain of KYP binds directly to methylated DNA, and SRA domains with missense mutations found in loss-of-function kyp mutants have reduced binding to methylated DNA in vitro. These data suggest that DNA methylation is required for the recruitment or activity of KYP and suggest a self-reinforcing loop between histone and DNA methylation. Lastly, we found that SRA domains from two Arabidopsis SRA-RING proteins also bind methylated DNA and that the SRA domains from KYP and SRA-RING proteins prefer methylcytosines in different sequence contexts. Hence, unlike the methyl-binding domain (MBD), which binds only methylated-CpG sequences, the SRA domain is a versatile new methyl-DNA-binding motif.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号