首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to investigate the protective effects of extracellular superoxide dismutase (SOD3) against amyloid beta (Aβ25–35)-induced damage in human neuroblastoma SH-SY5Y cells and to elucidate the mechanisms responsible for this beneficial effect. SH-SY5Y cells overexpressing SOD3 were generated by adenoviral vector-mediated infection and Aβ25–35 was then added to the cell culture system to establish an in vitro model of oxidative stress. Cell viability, the generation of intracellular reactive oxygen species (ROS), the expression and activity of antioxidant enzymes, the levels of lipid peroxidation malondialdehyde (MDA), the expression of mitochondrial apoptosis-related genes and calcium images were examined. Following Aβ25–35 exposure, SOD3 overexpression promoted the survival of SH-SY5Y cells, decreased the production of ROS, decreased MDA and calcium levels, and decreased cytochrome c, caspase-3, caspase-9 and Bax gene expression. Furthermore, SOD3 overexpression increased the expression and activity of antioxidant enzyme genes and Bcl-2 expression. Together, our data demonstrate that SOD3 ameliorates Aβ25–35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial pathway. These data provide new insights into the functional actions of SOD3 on oxidative stress-induced cell damage.  相似文献   

2.
目的:探究纳米二氧化铈(CeO2)对神经细胞PC12与SH-SY5Y活力的影响。方法:合成纳米CeO2材料,并对其结构进行表征,性能进行评估。用不同终浓度(1、2.5、5、10、25、50、75、100、150 μg/ml)的纳米CeO2分别处理PC12细胞与SH-SY5Y细胞24 h,使用MTT法检测其细胞活力。然后使用活性氧清除剂NAC与纳米CeO2共孵育处理PC12细胞与SH-SY5Y细胞,并用DCFH-DA探针染色,在荧光倒置显微镜下观察各组细胞的数量及其荧光强度。对实验数据采用单因素方差(one-way ANOVA)分析。结果:纳米CeO2处理后,PC12细胞(P<0.01)与SH-SY5Y细胞(P<0.01)的活力都明显下降,与对照组差异明显。DCFH-DA探针染色后,发现纳米CeO2的浓度越高,荧光强度越强,表明有活性氧(ROS)的产生。活性氧清除剂NAC与纳米CeO2(100 μg/ml)共同处理PC12后,荧光强度明显减弱。与25 μg/ml (P<0.01)、50 μg/ml(P<0.01)、75 μg/ml(P<0.01)、100 μg/ml(P<0.01)纳米CeO2处理组相比,共同处理组细胞活力明显增加。结论:纳米CeO2对神经细胞PC12与SH-SY5Y的活力有明显的抑制作用,其机制可能与ROS有关。  相似文献   

3.
Olfactory ensheathing cells (OECs) are a type of glia from the mammalian olfactory system, with neuroprotective and regenerative properties. β-Amyloid peptides are a major component of the senile plaques characteristic of the Alzheimer brain. The amyloid beta (Aβ) precursor protein is cleaved to amyloid peptides, and Aβ25–35 is regarded to be the functional domain of Aβ, responsible for its neurotoxic properties. It has been reported that Aβ25–35 triggers reactive oxygen species (ROS)-mediated oxidative damage, altering the structure and function of mitochondria, leading to the activation of the mitochondrial intrinsic apoptotic pathway. Our goal is to investigate the effects of OECs on the toxicity of aggregated Aβ25–35, in human neuroblastoma SH-SY5Y cells. For such purpose, SH-SY5Y cells were incubated with Aβ25–35 and OEC-conditioned medium (OECCM). OECCM promoted the cell viability and reduced the apoptosis, and decreased the intracellular ROS and the lipid peroxidation. In the presence of OECCM, mRNA and protein levels of antioxidant enzymes (SOD1 and SOD2) were upregulated. Concomitantly, OECCM decreased mRNA and the protein expression levels of cytochrome c, caspase-9, caspase-3, and Bax in SH-SY5Y cells, and increased mRNA and the protein expression level of Bcl-2. However, OECCM did not alter intracellular Ca2+ concentration in SH-SY5Y cells. Taken together, our data suggest that OECCM ameliorates Aβ25–35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial intrinsic pathway. These data provide new insights into the functional actions of OECCM on oxidative stress-induced cell damage.  相似文献   

4.
Abstract

Exogenous hydrogen peroxide (H2O2) can easily penetrate into biological membranes and enhance the formation of other reactive oxygen species (ROS). In the present study, we have investigated the neuroprotective effects of insulin on H2O2-induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y cells. To measure the changes in the cell viability of SH-SY5Y cells at different concentrations of H2O2 for 24?h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)-based assay was used and a 100?µM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 24?h of 100?µM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), ROS, and calcium ion (Ca2+) in neuronal cells, but insulin can effectively diminish the H2O2-induced oxidative damages to these cells. Moreover, cells treated with insulin increased H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of insulin treatment with SH-SY5Y cells increased the Bcl-2 levels and decreased the Akt levels. The treatment of insulin had played a protective effect on H2O2-induced oxidative stress related to the Akt/Bcl-2 pathways.  相似文献   

5.
Zonisamide (ZNS), an antiepileptic drug having beneficial effects also against Parkinson’s disease symptoms, has proven to display an antioxidant effects in different experimental models. In the present study, the effects of ZNS on rotenone-induced cell injury were investigated in human neuroblastoma SH-SY5Y cells differentiated towards a neuronal phenotype. Cell cultures were exposed for 24 h to 500 nM rotenone with or without pre-treatment with 10–100 μM ZNS. Then, the following parameters were analyzed: (a) cell viability; (b) intracellular reactive oxygen species production; (c) mitochondrial transmembrane potential; (d) cell necrosis and apoptosis; (e) caspase-3 activity. ZNS dose-dependently suppressed rotenone-induced cell damage through a decrease in intracellular ROS production, and restoring mitochondrial membrane potential. Similarly to ZNS effects, the treatment with N-acetyl-cysteine (100 μM) displayed significant protective effects against rotenone-induced ROS production and Δψm at 4 and 12 h respectively, reaching the maximal extent at 24 h. Additionally, ZNS displayed antiapoptotic effects, as demonstrated by flow cytometric analysis of annexin V/propidium iodide double staining, and significant attenuated rotenone-increased caspase 3 activity. On the whole, these findings suggest that ZNS preserves mitochondrial functions and counteracts apoptotic signalling mechanisms mainly by an antioxidant action. Thus, ZNS might have beneficial effect against neuronal cell degeneration in different experimental models involving mitochondrial dysfunction.  相似文献   

6.
The study investigated the effect of taurine on cell viability and neurotrophic gene expression in arsenite-treated human neuroblastoma SH-SY5Y cells. Arsenite-induced intracellular reactive oxygen species (ROS) and interrupted cell cycle in SH-SY5Y cells. In addition, arsenite reduced mitochondria membrane potential (MMP) and decreased neurotrophic gene expressions such as n-myc downstream-regulated gene 4 (NDRG-4), brain-derived neurotrophic factor (BDNF) and sirtuin-1 (SIRT-1) in SH-SY5Y cells. In parallel, taurine prevented cell cycle, restored MMP and reduced the intracellular ROS level, and taurine recovered NDRG-4, BDNF and SIRT-1 gene expressions in arsenite-treated SH-SY5Y cells while taurine alone has no effect on these parameters.  相似文献   

7.
Pyrroloquinoline quinone (PQQ), which is an essential nutrient, has been shown to act as an antioxidant. Reactive oxygen species (ROS) are thought to be responsible for neurotoxicity caused by the neurotoxin 6-hydroxydopamine (6-OHDA). In this study, we investigated the ability of PQQ to protect against 6-OHDA-induced neurotoxicity using human neuroblastoma SH-SY5Y. When SH-SY5Y cells were exposed to 6-OHDA in the presence of PQQ, PQQ prevented 6-OHDA-induced cell death and DNA fragmentation. Flow cytometry analysis using the ROS-sensitive fluorescence probe, dihydroethidium, revealed that PQQ reduced elevation of 6-OHDA-induced intracellular ROS. In contrast to PQQ, antioxidant vitamins, ascorbic acid and α-tocopherol, had no protective effect. Moreover, we showed that PQQ effectively scavenged superoxide, compared to the antioxidant vitamins. Therefore, our results suggest the protective effect of PQQ on 6-OHDA-induced neurotoxicity is involved, at least in part, in its function as a scavenger of ROS, especially superoxide.  相似文献   

8.
Published data supports the neuroprotective effects of several phenolic-containing natural products, including certain fruit, berries, spices, nuts, green tea, and olive oil. However, limited data are available for phenolic-containing plant-derived natural sweeteners including maple syrup. Herein, we investigated the neuroprotective effects of a chemically standardized phenolic-enriched maple syrup extract (MSX) using a combination of biophysical, in vitro, and in vivo studies. Based on biophysical data (Thioflavin T assay, transmission electron microscopy, circular dichroism, dynamic light scattering, and zeta potential), MSX reduced amyloid β1?42 peptide (Aβ1?42) fibrillation in a concentration-dependent manner (50–500 μg/mL) with similar effects as the neuroprotective polyphenol, resveratrol, at its highest test concentration (63.5?% at 500 μg/mL vs. 77.3?% at 50 μg/mL, respectively). MSX (100 μg/mL) decreased H2O2-induced oxidative stress (16.1?% decrease in ROS levels compared to control), and down-regulated the production of lipopolysaccharide (LPS)-stimulated inflammatory markers (22.1, 19.9, 74.8, and 87.6?% decrease in NOS, IL-6, PGE2, and TNFα levels, respectively, compared to control) in murine BV-2 microglial cells. Moreover, in a non-contact co-culture cell model, differentiated human SH-SY5Y neuronal cells were exposed to conditioned media from BV-2 cells treated with MSX (100 μg/mL) and LPS or LPS alone. MSX-BV-2 media increased SH-SY5Y cell viability by 13.8?% compared to media collected from LPS-BV-2 treated cells. Also, MSX (10 μg/mL) showed protective effects against Aβ1?42 induced neurotoxicity and paralysis in Caenorhabditis elegans in vivo. These data support the potential neuroprotective effects of MSX warranting further studies on this natural product.  相似文献   

9.
为研究金丝桃苷对高糖诱导的人神经母细胞瘤(SH-SY5Y)细胞氧化损伤的保护作用及机制,用含100mmo L/L葡萄糖和分别为20、50、100μmo L/L金丝桃苷的培养基共同孵育SH-SY5Y细胞36 h,检测细胞活力、细胞培养液中乳酸脱氢酶(LDH)水平及半胱氨酸天冬氨酸蛋白酶-3(caspase-3)活性,细胞内活性氧(ROS)水平、丙二醛(MDA)、还原型谷胱甘肽(GSH)含量和超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性及SIRT1和NF-кB基因的mRNA水平和蛋白含量。结果显示金丝桃苷可提高高糖诱导后SH-SY5Y细胞的存活率,抑制细胞LDH释放,清除ROS,降低MDA含量与caspase-3活性,增强SOD、CAT活性和GSH含量;同时,金丝桃苷还能提高SIRT1基因的mR-NA表达及蛋白含量,降低NF-кB基因的mRNA水平和蛋白含量。结果表明金丝桃苷能通过激活SIRT1基因,抑制NF-кB基因保护高糖所致SH-SY5Y细胞的氧化损伤。  相似文献   

10.
Background: Hydrogen peroxide, as other reactive oxygen species (ROS) produced during redox processes, induces lipid membrane peroxidation and protein degeneration causing cell apoptosis. ROS are recently considered as messengers in cell signalling processes, which, through reversible protein disulphide bridges formation, activate regulatory factors of cell proliferation and apoptosis. Disulphide bridges formation is catalysed by sulphydryl oxidase enzymes.

Aim: The neuroprotective effect of ALR protein (Alrp), a sulphydryl oxidase enzyme, on H2O2-induced apoptosis in SH-SY5Y cells has been evaluated.

Methods: Cell viability, flow cytometric evaluation of apoptotic cells, fluorescent changes of nuclear morphology, immunocytochemistry Alrp detection, Western blot evaluation of mitochondrial cyt c release and mitochondrial swelling were determined.

Results: Alrp prevents the H2O2-induced cell viability loss, apoptotic cell death and mitochondrial swelling in SH-SY5Y cells in culture.

Conclusions: The data demonstrate that Alrp improves SH-SY5Y cells survival in H2O2-induced apoptosis. It is speculated that this effect could be related to the Alrp enzymatic activity.  相似文献   

11.
Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides, which is a common infectant of corn and other cereal grains. Of concern to human health is also a possible airborne exposure to FB1-producing strains of F. verticillioides, which may grow in moisture-damaged buildings. In this study, we have characterized oxidative stress-related parameters induced by FB1 in three different neural cell lines, human SH-SY5Y neuroblastoma, rat C6 glioblastoma and mouse GT1-7 hypothalamic cells. The cells were exposed to graded doses of FB1 between 0.1 and 100 μM for 0-144 h after which the production of reactive oxygen species (ROS), lipid peroxidation, intracellular glutathione (GSH) levels and cell viability were measured. FB1 caused a dose-dependent increase of ROS production in C6 glioblastoma and GT1-7 hypothalamic cells but was without an effect in SH-SY5Y cells. Decreased GSH levels, increased MDA-formation, indicative of lipid peroxidation and necrotic cell death were observed in all cell lines after incubation with FB1. These findings indicate that FB1 induces oxidative stress in human, rat and mouse neural cell cultures.  相似文献   

12.
The contribution of oxidative stress to the pathophysiology of depression has been described in numerous studies. Particularly, an increased production of reactive oxygen species (ROS) caused by mitochondrial dysfunction can lead to neuronal cell death. Human neuroblastoma SH-SY5Y cells were used to investigate the neuroprotective effect of the antidepressant duloxetine against rotenone-induced oxidative stress. SH-SY5Y cells were pretreated with duloxetine (1–5 µM) for 24 h followed by a 24-h rotenone exposure (10 µM). The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor LY294002 (10 µM) and the heme oxygenase 1 (HO-1) inhibitor zinc protoporphyrin IX-ZnPP (5 µM) were added to cultures 1 h prior duloxetine treatments. After treatments cell viability and ROS generation were assessed. NF-E2-related factor-2 (Nrf2) nuclear translocation was assessed by immunofluorescent staining after 4 and 8 h of duloxetine incubation. Furthermore, the Nrf2 and HO-1 mRNA expression was carried out after 4–48 h of duloxetine treatment by qRT-PCR. Duloxetine pretreatment antagonized rotenone-induced overproduction of ROS and cell death in SH-SY5Y cells. In addition, a 1-h pretreatment with LY294002 abolished duloxetine’s protective effect. Duloxetine also induced nuclear translocation of the Nrf2 and the expression of its target gene, HO-1. Finally, the HO-1 inhibitor, ZnPP, suppressed the duloxetine protective effect. Overall, these results indicate that the mechanism of duloxetine neuroprotective action against oxidative stress and cell death might rely on the Akt/Nrf2/HO-1 pathways.  相似文献   

13.
There is growing evidence that plasma-activated medium (PAM), which is prepared by non-thermal plasma (NTP) irradiation of cell-free medium, is a beneficial tool for cancer therapy. PAM has been reported to preferentially kill cancer cells; however, its mechanism is not fully understood. Since PAM contains reactive oxygen species (ROS) and reactive nitrogen species, the anti-cancer effects of PAM are thought to be attributed to oxidative stress induced by these reactive molecules. Oxidative stress has been shown to release zinc (Zn2+) from intracellular Zn2+ stores and provoke Zn2+-dependent cell death. We have previously demonstrated that intracellular free Zn2+ plays a critical role in PAM-induced cell death in human neuroblastoma SH-SY5Y cells. In this study, we found that normal human fibroblasts were less susceptible to PAM cytotoxicity compared with SH-SY5Y cells. PAM decreased intracellular NAD+ levels in both cells, whereas the depletion of ATP and mitochondrial ROS generation was hardly observed in fibroblasts. Intracellular mobile Zn2+ contents of fibroblasts were lower than those of SH-SY5Y cells. PAM suppressed the activity of aconitase, which is a tricarboxylic acid cycle enzyme, only in SH-SY5Y cells, and N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a Zn2+ chelator, counteracted the suppression. The combination treatment with PAM and Zn2+ augmented PAM-induced ATP depletion, mitochondrial ROS generation, and cytotoxicity in fibroblasts. These findings suggest the possibility that cells with high intracellular mobile Zn2+ are susceptible to PAM cytotoxicity. Therefore, we concluded that the differences in mobile Zn2+ levels affect PAM-induced cellular responses.  相似文献   

14.
β2-Microglobulin (β2M) modified with advanced glycation end products (AGEs) is a major component of the amyloid deposits in hemodialysis-associated amyloidosis (HAA). However, the effect of glycation on the misfolding and aggregation of β2M has not been studied so far. Here we examine the molecular mechanism of aggregate formation of HAA-related ribosylated β2M in vitro. We find that the glycating agent d-ribose interacts with human β2M to generate AGEs that form aggregates in a time-dependent manner. Ribosylated β2M molecules are highly oligomerized compared with unglycated β2M, and have granular morphology. Furthermore, such ribosylated β2M aggregates show significant cytotoxicity to both human SH-SY5Y neuroblastoma and human foreskin fibroblast FS2 cells and induce intracellular reactive oxygen species (ROS). Presence of the antioxidant N-acetylcysteine (1.0 mM) attenuated intracellular ROS and prevented cell death induction in both SH-SY5Y and FS2 cells, indicating that the cytotoxicity of ribosylated β2M aggregates depends on a ROS-mediated pathway in both cell lines. In other words, d-ribose reacts with β2M and induces the ribosylated protein to form granular aggregates with high cytotoxicity through a ROS-mediated pathway. These findings suggest that ribosylated β2M aggregates could contribute to the dysfunction and death of cells and could play an important role in the pathogenesis of β2M-associated diseases such as HAA.  相似文献   

15.
16.
Though, it is quite well-known how retinoic acid (RA) is able to induce neuritogenesis in different in vitro models, the putative role exerted by reactive oxygen species (ROS) during this process still need to be further studied. For such purpose, we used a neuronal-like cell line (SH-SY5Y cells) in order to investigate whether the antioxidant Trolox (a hydrophilic analog of alpha-tocopherol) could have any effect on the number of RA-induced neurites, and how significant changes in cellular redox homeostasis may affect the cellular endogenous expression of tyrosine hydroxylase (TH). Our results show a significant enhancement of RA (10 μM)-induced neuritogenesis and TH endogenous expression, when cells were co-treated with Trolox (100 μM) for 7 days. Moreover, this effect was associated with an improvement in cellular viability. The mechanism seems to mainly involve PI3 K/Akt rather than MEK signaling pathway. Therefore, our data demonstrate that concomitant decreases in basal reactive oxygen species (ROS) production could exert a positive effect on the neuritogenic process of RA-treated SH-SY5Y cells.  相似文献   

17.
Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H2O2. A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H2O2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H2O2 induced toxicity and increased cell viability by approximately 40?%. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H2O2-treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H2O2. These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.  相似文献   

18.
Deoxynivalenol (DON) is Fusarium mycotoxin that is frequently found in many cereal-based foods, and its ingestion has a deleterious impact on human health. In this investigation, we studied the mechanism of DON-induced neurotoxicity and followed by cytoprotective efficacy of quercetin (QUE) in contradiction of DON-induced neurotoxicity through assessing the oxidative stress and apoptotic demise in the human neuronal model, i.e. SH-SY5Y cells. DON diminished the proliferation of cells in the manner of dose and time-dependent as revealed by cell viability investigations, i.e. MTT and lactate dehydrogenase assays. Additional studies, such as intracellular reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial membrane potential (MMP), DNA damage, cell cycle, and neuronal biomarkers (amino acid decarboxylase, tyrosine hydroxylase, and brain-derived neurotrophic factor) demonstrated that DON induces apoptotic demise in neuronal cells through oxidative stress intermediaries. On another hand, pre-treatment of neuronal cells with 1 mM of quercetin (QUE) showed decent viability upon exposure to 100 µM of DON. In detailed studies demonstrated that QUE (1 mM) pre-treated cells show strong attenuation efficiency against DON-induced ROS generation, LPO, MMP loss, DNA impairment, cell cycle arrest, and down-regulation of neuronal biomarkers. The consequences of the investigation concluded that QUE mitigates the DON-induced stress viz., decreased ROS production and LPO generation, upholding MMP and DNA integrity and regulation of neuronal biomarker gene expression in SH-SY5Y cells.  相似文献   

19.
BackgroundIntracellular iron involves in Fenton’s reaction-mediated Hydroxyl radical (OH·) generation by reacting with the neurotoxic agent 6-Hydroxydopamine (6-OHDA) autoxidation derivative Hydrogen Peroxide (H2O2). Several studies have been conducted so far on the neuroprotective activities of the iron chelator Deferoxamine (DFO) but little or no clear evidence about the underlying cellular mechanism is available.MethodsThe present study was conducted on Human neuroblastoma cell line SH-SY5Y in the absence or presence of 6-OHDA or H2O2 and / or DFO. Following incubation, cell viability assay, intracellular reactive oxygen species (ROS) determination, flow cytometric quantification of apoptotic cells followed by nuclear staining, intracellular tracking of transfected fusion construct of microtubule-associated protein 1B-light chain with Green fluorescent protein - Red fluorescent protein (LC3B-GFP-RFP reporters) and immunocytochemistry of intracellular Cathepsin protein by confocal microscopy, were conducted. In addition, western blotting was carried out to detect expressions of apoptotic and autophagy related proteins.ResultsThis study confirmed the neuroprotective potential of DFO by inhibiting 6-OHDA-mediated cell death and ROS generation. Reduced percentage of apoptotic cells and appearance of altered nuclei architecture followed by a reduced expression of cleaved PARP (Poly-ADP-ribose Polymerase) and cleaved Caspase-3 were observed upon DFO treatment against 6-OHDA, and as well as against H2O2 in SH-SY5Y cell lines. Besides, DFO induced the intracellular autophagolysosome formation (red puncta) rather than autophagosome (yellow puncta) only. Thereafter it was observed that DFO restored the expression of intracellular lysosomal protease Cathepsin and reduced the expression of the LC3-II.ConclusionTaken together, this study clearly demonstrated that the anti-Fenton activity of DFO inhibited apoptosis and caused blockade in ALP or autophagy dysfunction in SH-SY5Y cell lines. These outcomes further suggest that DFO provides neuroprotection by inhibiting apoptosis and inducing the progression of Autophagy- lysosomal pathway (ALP).  相似文献   

20.
Excessive formation of reactive oxygen species (ROS) and disruption of glutamate uptake have been hypothesized as key mechanisms contributing to quinolinic acid (QA)-induced toxicity. Thus, here we investigate if the use of diphenyl diselenide (PhSe)(2), guanosine (GUO) and MK-801, alone or in combination, could protect rat brain slices from QA-induced toxicity. QA (1?mM) increased ROS formation, thiobarbituric acid reactive substances (TBARS) and decreased cell viability after 2?h of exposure. (PhSe)(2) (1?μM) protected against this ROS formation in the cortex and the striatum and also prevented decreases in cell viability induced by QA. (PhSe)(2) (5?μM) prevented ROS formation in the hippocampus. GUO (10 and 100?μM) blocked the increase in ROS formation caused by QA and MK-801 (20 and 100?μM) abolished the pro-oxidant effect of QA. When the noneffective concentrations were used in combination produced a decrease in ROS formation, mainly (PhSe)(2)?+?GUO and (PhSe)(2)?+?GUO?+?MK-801. These results demonstrate that this combination could be effective to avoid toxic effects caused by high concentrations of QA. Furthermore, the data obtained in the ROS formation and cellular viability assays suggest different pathways in amelioration of QA toxicity present in the neurodegenerative process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号