首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor 2 (FGF2) has been assigned a role in melanocyte proliferation and in development of human cutaneous melanoma. We have used a transgenic mouse melanoma model in combination with mice lacking mouse FGF2 to analyse the possible implication of FGF2 in melanomagenesis. Tyr::N‐rasQ61K transgenic mice which are deficient for FGF2 and the tumor suppressors p16INK4a and p19ARF are hyperpigmented and develop cutaneous metastasizing melanoma, with no difference to mice wildtype for FGF2. We conclude from our data, that FGF2 is not essential for melanoma progression and metastasis.  相似文献   

2.
Lack of characteristic pigmentation and a wide range of clinical presentations account for the diagnostic challenge associated with amelanotic malignant melanoma. Experimental studies of this important human cancer have been hampered by the lack of an appropriate animal model. We previously described a transgenic mouse line (TG‐3) that spontaneously develops pigmented cutaneous melanoma. F1 crosses were generated with TG‐3 and several albino strains, and backcrosses were then made with the albinos. In the present report, we describe the restricted development and characterization of cutaneous amelanotic melanoma in these albino transgenic backcrosses. The incidence and behavior of melanoma in these mice were monitored. A high incidence (80–100%) of spontaneous amelanotic melanoma was observed in albino transgenic mice derived from backcrosses with A, AKR, FVB, and SJL strains. The lowest incidence (30%) was obtained in BALB/c‐derived crosses. No tumors were observed in non‐transgenic mice. Immunohistochemical and western blot analyses using antibodies against three melanocyte‐specific markers of the tyrosinase family of proteins confirmed that the tumors were composed of amelanotic melanocytes. Furthermore, the presence of numerous premelanosomes observed by electron microscopy further supported the melanocytic origin of these tumors. Previous in vitro studies on human melanoma have suggested that cutaneous amelanotic melanoma was evolving from pre‐existing pigmented cutaneous melanoma. However, our results indicate that it can occur directly, as evidenced by the appearance of cutaneous amelanotic melanoma in the tyrosinase‐deficient albino mice. These mice represent a potentially valuable model for studying the mechanistic, diagnostic, and therapeutic features of this highly malignant neoplasm.  相似文献   

3.
Lack of characteristic pigmentation and a wide range of clinical presentations account for the diagnostic challenge associated with amelanotic malignant melanoma. Experimental studies of this important human cancer have been hampered by the lack of an appropriate animal model. We previously described a transgenic mouse line (TG-3) that spontaneously develops pigmented cutaneous melanoma. F1 crosses were generated with TG-3 and several albino strains, and backcrosses were then made with the albinos. In the present report, we describe the restricted development and characterization of cutaneous amelanotic melanoma in these albino transgenic backcrosses. The incidence and behavior of melanoma in these mice were monitored. A high incidence (80-100%) of spontaneous amelanotic melanoma was observed in albino transgenic mice derived from backcrosses with A, AKR, FVB, and SJL strains. The lowest incidence (30%) was obtained in BALB/c-derived crosses. No tumors were observed in non-transgenic mice. Immunohistochemical and western blot analyses using antibodies against three melanocyte-specific markers of the tyrosinase family of proteins confirmed that the tumors were composed of amelanotic melanocytes. Furthermore, the presence of numerous premelanosomes observed by electron microscopy further supported the melanocytic origin of these tumors. Previous in vitro studies on human melanoma have suggested that cutaneous amelanotic melanoma was evolving from preexisting pigmented cutaneous melanoma. However, our results indicate that it can occur directly, as evidenced by the appearance of cutaneous amelanotic melanoma in the tyrosinase-deficient albino mice. These mice represent a potentially valuable model for studying the mechanistic, diagnostic, and therapeutic features of this highly malignant neoplasm.  相似文献   

4.
The growth of immunogenic tumors in immunocompetent individuals is one of the oldest conundrums in tumor immunology. Although the ability of mouse CD8+ T cells to control transplanted tumors is well documented, little is known about their impact on autochthonous tumors. To gain insight into the role of CD8+ T cells during the course of cancer development, we produced a novel model of spontaneous melanoma. The metallothionein (MT)-ret/AAD mouse is transgenic for the RET oncogene and the chimeric MHC molecule AAD (alpha1-alpha2 domains of HLA-A2 linked to alpha3 domain of H2-Dd). This model recapitulates the natural history of human melanoma, and expression of the AAD molecule makes it suitable for analyzing CD8+ T cell responses directed against peptide Ags that have been previously identified in HLA-A2+ melanoma patients. We found that, as tumors grow, mice develop a broad melanoma-specific CD8+ T cell response. Occurrence of cutaneous nodules is not affected by CD8+ T cell depletion, showing that although CD8+ T cells are functional, they have no effect on established cutaneous tumors. However, depleted mice die from visceral disease much earlier than controls, showing that CD8+ T cells control metastasis spreading and disease progression. Antigenic modulation is observed in visceral metastases, suggesting that visceral nodules may be subject to immunoediting. Our data demonstrate that growth of melanoma in the MT-ret/AAD model involves several tolerance mechanisms sequentially. They also reveal a different role for CD8+ T cells toward early stage of cutaneous tumors and late visceral metastatic stage of the disease.  相似文献   

5.
We generated transgenic (TG) mice overexpressing fibroblast growth factor (FGF)-2 protein (22- to 34-fold) in the heart. Chronic FGF-2 overexpression revealed no significant effect on heart weight-to-body weight ratio or expression of cardiac differentiation markers. There was, however, a significant 20% increase in capillary density. Although there was no change in FGF receptor-1 expression, relative levels of phosphorylated c-Jun NH(2)-terminal kinase and p38 kinase as well as of membrane-associated protein kinase C (PKC)-alpha and total PKC-epsilon were increased in FGF-2-TG mouse hearts. An isolated mouse heart model of ischemia-reperfusion injury was used to assess the potential of increased endogenous FGF-2 for cardioprotection. A significant 34-45% increase in myocyte viability, reflected in a decrease in lactate dehydrogenase released into the perfusate, was observed in FGF-2 overexpressing mice and non-TG mice treated exogenously with FGF-2. In conclusion, FGF-2 overexpression causes augmentation of signal transduction pathways and increased resistance to ischemic injury. Thus, stimulation of endogenous FGF-2 expression offers a potential mechanism to enhance cardioprotection.  相似文献   

6.
Syndecan-4 is one of the principal heparan sulfate-carrying proteins on the cell surface. Unlike other members of syndecan family, syndecan-4 mediates phosphatidylinositol 4,5-bisphosphate 2 (PIP(2))-dependent PKC-alpha activation, and overexpression of syndecan-4 in vitro results in enhanced FGF2 signaling. The present study was designed to test the functional effect of increased syndecan-4 expression in endothelial cells in transgenic mice. Several transgenic mice lines expressing syndecan-4 cDNA under control of human endothelial nitric oxide (NO) synthase (eNOS) promoter were generated. Exogenous syndecan-4 was mainly expressed in the heart, brain, and lungs. In particular, the heart demonstrated the greatest increase in the ratio of transgenic-to-native syndecan-4 gene expression. Vessels from the eNOS-syndecan-4 mice demonstrated more pronounced vasodilation to FGF2 but not to VEGF-A(165), sodium nitroprusside, and A 23187 compared with wild-type mice. To elucidate the mechanism of this effect, we measured NO release from primary cardiac endothelial cells isolated from transgenic or wild-type adult mice. Cells from the eNOS-syndecan-4 transgenic mice had a significant increase in FGF2- and VEGF-A(165)-induced NO release compared with endothelial cells from the wild-type mice. However, the absolute magnitude of this increase was higher for FGF2 than VEGF-A(165). In conclusion, enhanced syndecan-4 expression in mouse cardiac endothelial cells results in preferential augmentation of FGF2 but not VEGF-A(165)-induced NO release.  相似文献   

7.
Requirements for FGF3 and FGF10 during inner ear formation   总被引:8,自引:0,他引:8  
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.  相似文献   

8.
FGF2 transgenic mice were developed in which type I collagen regulatory sequences drive the nuclear high molecular weight FGF2 isoforms in osteoblasts (TgHMW). The phenotype of TgHMW mice included dwarfism, decreased bone mineral density (BMD), osteomalacia, and decreased serum phosphate (Pi). When TgHMW mice were fed a high Pi diet, BMD was increased, and dwarfism was partially reversed. The TgHMW phenotype was similar to mice overexpressing FGF23. Serum FGF23 was increased in TgHMW mice. Fgf23 mRNA in bones and fibroblast growth factor receptors 1c and 3c and Klotho mRNAs in kidneys were increased in TgHMW mice, whereas the renal Na+/Pi co-transporter Npt2a mRNA was decreased. Immunohistochemistry and Western blot analyses of TgHMW kidneys showed increased KLOTHO and decreased NPT2a protein. The results suggest that overexpression of HMW FGF2 increases FGF23/FGFR/KLOTHO signaling to down-regulate NPT2a, causing Pi wasting, osteomalacia, and decreased BMD. We assessed whether HMW FGF2 expression was altered in the Hyp mouse, a mouse homolog of the human disease X-linked hypophosphatemic rickets/osteomalacia. Fgf2 mRNA was increased in bones, and Western blots showed increased FGF2 protein in nuclear fractions from osteoblasts of Hyp mice. In addition, immunohistochemistry demonstrated co-localization of FGF23 and HMW FGF2 protein in osteoblasts and osteocytes from Hyp mice. This study reveals a novel mechanism of regulation of the FGF23-Pi homeostatic axis.  相似文献   

9.
10.
Despite a wealth of experimental data implicating fibroblast growth factor (FGF) signaling in various developmental processes, genetic inactivation of individual genes encoding specific FGFs or their receptors (FGFRs) has generally failed to demonstrate their role in vertebrate organogenesis due to early embryonic lethality or functional redundancy. Here we show that broad mid-gestational expression of a novel secreted kinase-deficient receptor, specific for a defined subset of the FGF superfamily, caused agenesis or severe dysgenesis of kidney, lung, specific cutaneous structures, exocrine and endocrine glands, and craniofacial and limb abnormalities reminiscent of human skeletal disorders associated with FGFR mutations. Analysis of diagnostic molecular markers revealed that this soluble dominant-negative mutant disrupted early inductive signaling in affected tissues, indicating that FGF signaling is required for growth and patterning in a broad array of organs and in limbs. In contrast, transgenic mice expressing a membrane-tethered kinase-deficient FGFR were viable. Our results demonstrate that secreted FGFR mutants are uniquely effective as dominant-negative agents in vivo, and suggest that related soluble receptor isoforms expressed in wild-type mouse embryos may help regulate FGF activity during normal development.  相似文献   

11.
FGF1 is a signal peptide-less nonclassically released growth factor that is involved in angiogenesis, tissue repair, inflammation, and carcinogenesis. The effects of nonclassical FGF export in vivo are not sufficiently studied. We produced transgenic mice expressing FGF1 in endothelial cells (EC), which allowed the detection of FGF1 export to the vasculature, and studied the efficiency of postischemic kidney repair in these animals. Although FGF1 transgenic mice had a normal phenotype with unperturbed kidney structure, they showed a severely inhibited kidney repair after unilateral ischemia/reperfusion. This was manifested by a strong decrease of postischemic kidney size and weight, whereas the undamaged contralateral kidney exhibited an enhanced compensatory size increase. In addition, the postischemic kidneys of transgenic mice were characterized by hyperplasia of interstitial cells, paucity of epithelial tubular structures, increase of the areas occupied by connective tissue, and neutrophil and macrophage infiltration. The continuous treatment of transgenic mice with the cell membrane stabilizer, taurine, inhibited nonclassical FGF1 export and significantly rescued postischemic kidney repair. It was also found that similar to EC, the transgenic expression of FGF1 in monocytes and macrophages suppresses kidney repair. We suggest that nonclassical export may be used as a target for the treatment of pathologies involving signal peptide-less FGFs.  相似文献   

12.
Phenotypic and molecular heterogeneity in human melanoma has impaired efforts to explain many of the clinically important features of melanoma. For example, many of the underlying mechanisms that might predict age-of-onset, time to metastasis and other key elements in melanoma progression remain unknown. Furthermore, melanoma staging used to predict outcome and treatment has not yet moved beyond a basic phenotypic classification. While molecularly targeted therapies show great promise for melanoma patients, establishing accurate animal models that recapitulate human cutaneous melanoma progression remains a priority. We examine the relevance of mice as models for human melanoma progression and for key molecular and histopathologic variants of melanoma. These mice may be used as preclinical models to probe the relationships between causative mutations, disease progression and outcome for molecularly targeted therapeutics. We ask how new mouse models, or more detailed histopathologic and molecular analyses of existing mouse models, may be used to advance our understanding of genotype-phenotype correlations in this tumour type. This necessarily involves a consideration of the utility of mice as models for ultraviolet radiation-induced melanoma, and how this might be improved.  相似文献   

13.
Fibroblast growth factor-2 (FGF2) is a potent mitogen for vascular endothelial cells and exogenous administration of FGF2 stimulates angiogenesis. However, increased expression of FGF2 in the retina does not cause angiogenesis. One possible explanation is that FGF2 may not be capable of initiating angiogenesis unless it is administered in pharmacologic levels or there is coexpression of another angiogenic factor. Alternatively, there may be control mechanisms that sequester FGF2 in vivo, preventing it from manifesting its in vitro angiogenic activity. We tested the first hypothesis by crossing mice that express FGF2 in the retina with mice that express vascular endothelial growth factor (VEGF) in the retina. Surprisingly, despite comparable levels of VEGF expression, mice that expressed both FGF2 and VEGF had significantly less neovascularization than mice that expressed VEGF alone. The second hypothesis was tested by treating Rho/FGF2 transgenic mice with low-intensity laser photocoagulation that disrupts photoreceptors, but does not rupture Bruch's membrane, or intense laser that ruptures Bruch's membrane. In Rho/FGF2 transgenics, but not wild type mice, choroidal neovascularization developed in areas of low-intensity laser. Both wild type and transgenic mice developed choroidal neovascularization in areas of intense laser that ruptured Bruch's membrane, but the area of neovascularization was significantly greater in transgenics. These data suggest that increased retinal expression of FGF2 is angiogenic only when it is accompanied by cell injury that overcomes sequestration control mechanisms.  相似文献   

14.
The frequent loss of both INK4a and ARF in melanoma raises the question of which INK4a-ARF gene product functions to suppress melanoma genesis in vivo. Moreover, the high incidence of INK4a-ARF inactivation in transformed melanocytes, along with the lack of p53 mutation, implies a cell type-specific role for INK4a-ARF that may not be complemented by other lesions of the RB and p53 pathways. A mouse model of cutaneous melanoma has been generated previously through the combined effects of INK4a(Delta2/3) deficiency (null for INK4a and ARF) and melanocyte-specific expression of activated RAS (tyrosinase-driven H-RAS(V12G), Tyr-RAS). In this study, we made use of this Tyr-RAS allele to determine whether activated RAS can cooperate with p53 loss in melanoma genesis, whether such melanomas are biologically comparable to those arising in INK4a(Delta2/3-/-) mice, and whether tumor-associated mutations emerge in the p16(INK4a)-RB pathway in such melanomas. Here, we report that p53 inactivation can cooperate with activated RAS to promote the development of cutaneous melanomas that are clinically indistinguishable from those arisen on the INK4a(Delta2/3) null background. Genomewide analysis of RAS-induced p53 mutant melanomas by comparative genomic hybridization and candidate gene surveys revealed alterations of key components governing RB-regulated G(1)/S transition, including c-Myc, cyclin D1, cdc25a, and p21(CIP1). Consistent with the profile of c-Myc dysregulation, the reintroduction of p16(INK4a) profoundly reduced the growth of Tyr-RAS INK4a(Delta2/3-/-) tumor cells but had no effect on tumor cells derived from Tyr-RAS p53(-/-) melanomas. Together, these data validate a role for p53 inactivation in melanomagenesis and suggest that both the RB and p53 pathways function to suppress melanocyte transformation in vivo in the mouse.  相似文献   

15.
Basic fibroblast growth factor (FGF‐2) is expressed in the peripheral nervous system and is up‐regulated after nerve lesion. It has been demonstrated that administration of FGF‐2 protects neurons from injury‐induced cell death and promotes axonal regrowth. Using transgenic mice over‐expressing FGF‐2 (TgFGF‐2), we addressed the importance of endogenously generated FGF‐2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild‐type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF‐2. Morphometric evaluation of intact nerves from TgFGF‐2 mice revealed no difference in number and size of myelinated fibers compared to wild‐type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF‐2 over‐expression on Schwann cell proliferation during the early regeneration process, we used BrdU‐labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild‐types. We propose that endogenously synthesized FGF‐2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

16.
17.
TMEM207 was first characterized as being an important molecule for the invasion activity of gastric signet-ring cell carcinoma cells. In order to unravel the pathological properties of TMEM207, we generated several transgenic mouse lines, designated C57BL/6-Tg (ITF-TMEM207), in which murine TMEM207 was ectopically expressed under a truncated (by ~200 bp) proximal promoter of the murine intestinal trefoil factor (ITF) gene (also known as Tff3). Unexpectedly, a C57BL/6-Tg (ITF-TMEM207) mouse line exhibited a high incidence of spontaneous intradermal tumors with histopathological features that resembled those of various human cutaneous adnexal tumors. These tumors were found in ~14% female and 13% of male 6- to 12-month-old mice. TMEM207 immunoreactivity was found in hair follicle bulge cells in non-tumorous skin, as well as in cutaneous adnexal tumors of the transgenic mouse. The ITF-TMEM207 construct in this line appeared to be inserted to a major satellite repeat sequence at chromosome 2, in which no definite coding molecule was found. In addition, we also observed cutaneous adnexal tumors in three other C57BL/6-Tg (ITF-TMEM207) transgenic mouse lines. We believe that the C57BL/6-Tg (ITF-TMEM207) mouse might be a useful model to understand human cutaneous adnexal tumors.KEY WORDS: Cutaneous adnexal tumor, Mouse model, TMEM207  相似文献   

18.
目的:构建抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因动物乳腺特异性表达载体并制备和验证抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器模型。方法:利用PCR法扩增出抗人p185~(erbB2)人鼠嵌合抗体ChAb26的重链基因H和轻链基因L,然后分别将嵌合抗体重链基因H和嵌合抗体轻链基因L连接到乳腺特异性表达质粒pBC1,从而构建抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因动物乳腺特异性表达载体pBC1-H和pBC1-L。分别将抗p185~(erbB2)人鼠嵌合抗体ChAb26乳腺特异表达载体pBC1-H和pBC1-L线性化,然后使用原核显微共注射法获得8只转基因FVB小鼠,通过鼠尾直接PCR鉴定其转基因阳性。通过RT-PCR、荧光定量PCR鉴定转基因小鼠乳腺组织中抗p185~(erbB2)人鼠嵌合抗体ChAb26的mRNA表达。使用小鼠乳汁采集器收集其乳汁并通过Western blot和夹心ELISA等实验鉴定抗p185~(erbB2)人鼠嵌合抗体ChAb26是否获得表达。结果:经测序验证,抗p185~(erbB2)人鼠嵌合抗体ChAb26的嵌合重链基因H和嵌合轻链基因L分别与乳腺特异表达质粒pBC1正确正向连接。鼠尾直接PCR结果显示所获8只转基因FVB小鼠均为转基因双阳性小鼠,且抗p185~(erbB2)人鼠嵌合抗体ChAb26的重链基因H和轻链基因L在它们的后代中稳定遗传,它们的后代中转基因小鼠双阳性率约为30%; RT-PCR和荧光定量PCR的结果显示,转基因双阳性小鼠及其双阳性后代的乳腺组织中存在抗p185~(erbB2)人鼠嵌合抗体ChAb26的mRNA表达; Western blot和ELISA等实验结果显示,转基因双阳性小鼠乳汁中存在抗p185~(erbB2)人鼠嵌合抗体ChAb26的蛋白质表达,而且抗p185~(erbB2)人鼠嵌合抗体ChAb26与羊抗人κ链抗体和羊抗人Ig G Fc-HRP抗体均能特异性结合。结论:成功构建抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因动物乳腺特异性表达载体pBC1-H和pBC1-L和制备了抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器模型,为今后抗p185~(erbB2)人鼠嵌合抗体ChAb26转基因牛乳腺生物反应器的研究奠定了理论和技术基础。  相似文献   

19.
In an effort to identify a promoter suitable for studying early ocular development, we generated transgenic mice carrying the lacZ reporter gene linked to the tyrosinase-related protein 2 (TRP2) promoter. TRP2-lacZ was expressed in early retinal pigment epithelium (RPE) and early neural crest cells in embryos. The promoter activity was robust and consistent in independent transgenic lines. The transgene was also expressed in the optic nerve and neural crest-derived neuronal cells in which the endogenous TRP2 gene is not expressed. This suggests that repressor elements may be missing in the promoter used in this study. To test whether this promoter can be used to study melanocyte development, we cross-mated TRP2-lacZ transgenic mice with mice heterozygous for the Patch (Ph) mutation. The pattern of beta-galactosidase activity in the embryos correlates well with the pigmentation phenotype in postnatal and adult Ph/+ mice. We also generated transgenic mice expressing fibroblast growth factor 9 (FGF9) directed by the TRP2 promoter and examined the effect on ocular development. Ectopic expression of FGF9 in the early embryonic RPE switched its differentiation pathway to a neuronal fate, resulting in formation of a duplicated neural retina in transgenic mice. These studies demonstrate that the TRP2 promoter is valuable for transgenic studies of ocular differentiation and development of neural crest cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号