首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Transposition depends on DNA sequences located at or near the termini of the transposon. In the maize transposable element Ds, these sequences were studied by site-directed mutagenesis followed by a transient excision assay in Petunia protoplasts. The transposase-binding AAACGG motifs found in large numbers in the element are important, but none of them is in itself indispensable, for excision. However, mutation of an isolated motif at the 3′ end considerably reduced excisability. The inverted termini were confirmed to be indispensable. Point mutations in regions outside the inverted termini of Ds and not located in the transposase-binding motifs had, in some cases, a pronounced effect on excision frequency. The implications of these findings are discussed.  相似文献   

7.
A two-element transposon system based on the maize elements Ac and Ds is currently being used for insertional mutagenesis in Arabidopsis. With the aim of making this system as efficient as possible we have continued to analyse several parameters which affect Ds activity in Arabidopsis. The influence of genomic position on Ds excision has been analysed in five lines carrying Ds integrated in different genomic locations. Differences in both somatic and germinal excision were observed between the different lines. The relationship between somatic and germinal excision, the timing of excision events and environmental influences on transposition frequency have been investigated. The effect of varying dosage of the different elements was also analysed. A strong positive dosage effect was observed for the transposase source, but not for the Ds element. Analysis of germinal excision events showed that the majority of them occurred very late in the development of the plant, resulting in the majority of Ds transpositions being independent events.  相似文献   

8.
Two kinds of T-DNA constructs, I-RS/dAc-I-RS and Hm(R)Ds, carrying a non-autonomous transposable element of Ac of maize were introduced into rice plants by Agrobacterium-mediated gene transfer. Six transgenic rice plants identified as containing a single copy of the element were crossed with two transgenic rice plants carrying a gene for Ac transposase under the control of the cauliflower mosaic virus 35S promoter. In F2 progenies, excision of the element was detected by PCR analysis and re-integration of the element was investigated by Southern blot analysis. The frequency of the excision of the element was found to vary from 0 to 70% depending on the crossing combination. The frequency of the number of individual transposition events out of the total number of F2 plants with germinal excision was 44% in one crossing combination and 38% in the other. In the most efficient case, 10 plants with independent transposition were obtained out of the 49 F2 plants tested. Linkage analysis of the empty donor site and the transposed Ds-insertion site in F3 plants demonstrated that one of five Ds-insertion sites was not linked to the empty donor site. The transgenic rice obtained in this study can be used for functional genomics of rice.  相似文献   

9.
Most of the maize kernel oil is located in the embryo while the majority of starch is located in the endosperm. Maize kernel composition and value are affected significantly by the ratio of the embryo size to the endosperm size; however, the genetic regulation of embryo to endosperm ratio (EER) in maize is unknown. Here we identified ZmGE2 gene, which encodes a cytochrome p450 protein, as a gene associated with EER variation in maize. We first expressed rice Giant Embryo (GE) gene driven by oleosin promoter in maize and detected a 23.2?% reduction in EER in transgenic seeds, demonstrating the existence of evolutionarily conserved mechanisms for EER determination in rice and maize. We next identified maize GE2, a homolog of rice GE sharing 70?% identity in amino sequence, as a candidate based on the similar expression pattern and co-localization with a previously detected QTL for EER. Followed by linkage and association mapping, a 247-bp transposable element (TE) insertion in 3′-untranslated region of ZmGE2 gene was identified to be associated with increase in EER and kernel oil content. Expression level of the favorable ZmGE2 allele containing the 247-bp TE insertion was strongly reduced. In addition, the 247-bp TE insertion site was a selection target during the artificial long-term selection for the high EER trait in a high oil population. This is the first report that demonstrates an association of ZmGE2 with EER variation in maize and identifies ZmGE2 gene as a promising target for manipulation of EER and grain composition by either transgenic approach or molecular breeding in maize.  相似文献   

10.
11.
12.
A mariner transposable element from a lacewing.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

13.
14.
Transposable elements are the major component of the maize genome and presumably highly polymorphic yet they have not been used in population genetics and association analyses. Using the Transposon Display method, we isolated and converted into PCR-based markers 33 Miniature Inverted Repeat Transposable Elements (MITE) polymorphic insertions. These polymorphisms were genotyped on a population-based sample of 26 American landraces for a total of 322 plants. Genetic diversity was high and partitioned within and among landraces. The genetic groups identified using Bayesian clustering were in agreement with published data based on SNPs and SSRs, indicating that MITE polymorphisms reflect maize genetic history. To explore the contribution of MITEs to phenotypic variation, we undertook an association mapping approach in a panel of 367 maize lines phenotyped for 26 traits. We found a highly significant association between the marker ZmV1-9, on chromosome 1, and male flowering time. The variance explained by this association is consistent with a flowering delay of +123 degree-days. This MITE insertion is located at only 289 nucleotides from the 3′ end of a Cytochrome P450-like gene, a region that was never identified in previous association mapping or QTL surveys. Interestingly, we found (i) a non-synonymous mutation located in the exon 2 of the gene in strong linkage disequilibrium with the MITE polymorphism, and (ii) a perfect sequence homology between the MITE sequence and a maize siRNA that could therefore potentially interfere with the expression of the Cytochrome P450-like gene. Those two observations among others offer exciting perspectives to validate functionally the role of this region on phenotypic variation.  相似文献   

15.
16.
17.
18.
Screening of a human B-cell cDNA library with a topoisomerase II beta gene-specific probe revealed the presence of two distinct forms of topoisomerase II beta cDNA. One form (designated topoisomerase II beta-1), representing the majority of the clones, would encode the topoisomerase II beta amino acid sequence reported recently [Jenkins, J.R. et al. (1992) Nucleic Acids Res., 20, 5587-5592]. The second form (designated topoisomerase II beta-2) would encode a protein containing an additional 5 amino acids inserted after Valine-23 of the topoisomerase II beta-1 protein sequence. The topoisomerase II beta-1 and beta-2 mRNAs were both widely expressed in human cell lines and tissues. Topoisomerase II beta-2 mRNA was expressed at a lower level than that of the beta-1 form, but the relative expression of the two forms varied in different cell types. Analysis of genomic DNA clones revealed that the two forms of topoisomerase II beta mRNA arose via differential splicing. These data indicate that in addition to the closely related topoisomerase II alpha and beta isozymes, there are two forms of topoisomerase II beta mRNA widely expressed in human cells.  相似文献   

19.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

20.
The piggyBac transposable element, originally isolated from a virus in an insect cell line, is a valuable molecular tool for transgenesis and mutagenesis of invertebrates. For heterologous transgenesis in a variety of mammals, transfer of the piggyBac transposable element from an ectopic plasmid only requires expression of piggyBac transposase. To determine if piggyBac could function in dicotyledonous plants, a two-element system was developed in tobacco (Nicotiana tabacum) to test for transposable element excision and insertion. The first transgenic line constitutively expressed piggyBac transposase, while the second transgenic line contained at least two non-autonomous piggyBac transposable elements. Progeny from crosses of the two transgenic lines was analyzed for piggyBac excision and transposition. Several progeny displayed excision events, and all the sequenced excision sites exhibited evidence of the precise excision mechanism characteristic of piggyBac transposase. Two unique transposition insertion events were identified that each included diagnostic duplication of the target site. These data indicate that piggyBac transposase is active in a dicotyledonous plant, although at a low frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号