首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The antipsychotic drug thioridazine is a candidate drug for an alternative treatment of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) in combination with the β-lactam antibiotic oxacillin. The drug has been shown to have the capability to resensitize MRSA to oxacillin. We have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis in response to thioridazine in combination with oxacillin. We observed that the oxacillin-induced expression of genes belonging to the VraSR regulon is reduced by the addition of thioridazine. The exclusion of such key factors involved in cell wall biosynthesis will most likely lead to a weakened cell wall and affect the ability of the bacteria to sustain oxacillin treatment. Furthermore, we found that thioridazine itself reduces the expression level of selected virulence genes and that selected toxin genes are not induced by thioridazine. In the present study, we find indications that the mechanism underlying reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis.  相似文献   

4.
5.
Antibiotic-resistant Staphylococcus aureus is a major concern to public health. Methicillin-resistant S. aureus strains are completely resistant to all beta-lactams antibiotics. One of the main factors involved in methicillin resistance in S. aureus is the penicillin-binding protein, PBP2a. This protein is insensitive to inactivation by beta-lactam antibiotics such as methicillin. Although other proteins are implicated in high and homogeneous levels of methicillin resistance, the functions of these other proteins remain elusive. Herein, we report for the first time on the putative function of one of these proteins, FmtA. This protein specifically interacts with beta-lactam antibiotics forming covalently bound complexes. The serine residue present in the sequence motif Ser-X-X-Lys (which is conserved among penicillin-binding proteins and beta-lactamases) is the active-site nucleophile during the formation of acyl-enzyme species. FmtA has a low binding affinity for beta-lactams, and it experiences a slow acylation rate, suggesting that this protein is intrinsically resistant to beta-lactam inactivation. We found that FmtA undergoes conformational changes in presence of beta-lactams that may be essential to the beta-lactam resistance mechanism. FmtA binds to peptidoglycan in vitro. Our findings suggest that FmtA is a penicillin-binding protein, and as such, it may compensate for suppressed peptidoglycan biosynthesis under beta-lactam induced cell wall stress conditions.  相似文献   

6.
7.
8.
A close homologue of mecA, the determinant of broad-spectrum beta-lactam resistance in Staphylococcus aureus was recently identified as a native gene in the animal commensal species Staphylococcus sciuri. Introduction of the mecA homologue from a methicillin-resistant strain of S. sciuri into a susceptible strain of S. aureus caused an increase in drug resistance and allowed continued growth and cell wall synthesis of the bacteria in the presence of high concentrations of antibiotic. We determined the muropeptide composition of the S. sciuri cell wall by using a combination of high-performance liquid chromatography, mass spectrometric analysis, and Edman degradation. Several major differences between the cell walls of S. aureus and S. sciuri were noted. The pentapeptide branches in S. sciuri were composed of one alanine and four glycine residues in contrast to the pentaglycine units in S. aureus. The S. sciuri wall but not the wall of S. aureus contained tri- and tetrapeptide units, suggesting the presence of dd- and ld-carboxypeptidase activity. Most interestingly, S. aureus carrying the S. sciuri mecA and growing in methicillin-containing medium produced a cell wall typical of S. aureus and not S. sciuri, in spite of the fact that wall synthesis under these conditions had an absolute dependence on the heterologous S. sciuri gene product. The protein product of the S. sciuri mecA can efficiently participate in cell wall biosynthesis and build a cell wall using the cell wall precursors characteristic of the S. aureus host.  相似文献   

9.
Staphylococcus aureus remains a clinical scourge. Recent studies have revealed that S. aureus is capable of mounting a response to antibiotics that target cell wall peptidoglycan biosynthesis, such as beta-lactams and vancomycin. A phosphotransfer-mediated signaling pathway composed of a histidine protein kinase, VraS, and a response regulator protein, VraR, has been linked to the coordination of this response. Herein, we report for the first time on the signal transduction mechanism of the VraSR system. We found that VraS is capable of undergoing autophosphorylation in vitro and its phosphoryl group is rapidly transferred to VraR. In addition, phosphorylated VraR undergoes rapid dephosphorylation by VraS. Evidence is presented that VraR has adopted a novel strategy in regulating the output response of the VraSR-mediated signaling pathway. The VraR effector domain inhibits formation of inactive VraR dimers and, in doing so, it holds the regulatory domain into an intermediate active state. We show that only phosphorylation induces formation of the biological active VraR-dimer species. Furthermore, we propose that damage inflicted to cell wall peptidoglycan could be the main source of the stimuli that VraR responds to due to the tight control that VraS has on the phosphorylation state of VraR. Our findings provide for the first time insights into the molecular basis for the proposed role of VraSR as a "sentinel" system capable of rapidly sensing cell wall peptidoglycan damage and coordinating a response that enhances the resistance phenotype in S. aureus.  相似文献   

10.
11.
Staphylococcus simulans secretes lysostaphin, a bacteriolytic enzyme that specifically binds to the cell wall envelope of Staphylococcus aureus and cleaves the pentaglycine cross bridges of peptidoglycan, thereby killing staphylococci. The study of S. aureus mutants with resistance to lysostaphin-mediated killing has revealed biosynthetic pathways for cell wall assembly. To identify additional genes involved in cell wall envelope biosynthesis, we have screened a collection of S. aureus strain Newman transposon mutants for lysostaphin resistance. Bursa aurealis insertion in SAV2335, encoding a polytopic membrane protein with predicted protease domain, caused a high degree of lysostaphin resistance, similar to the case for a previously described femAB promoter mutant. In contrast to the case for this femAB mutant, transposon insertion in SAV2335, herein named lyrA (lysostaphin resistance A), did not cause gross alterations of cell wall cross bridges such as truncations of pentaglycine to tri- or monoglycine. Also, inactivation of LyrA in a methicillin-resistant S. aureus strain did not precipitate a decrease in beta-lactam resistance as observed for fem (factor essential for methicillin resistance) mutants. Lysostaphin bound to the cell wall envelopes of lyrA mutants in a manner similar to that for wild-type staphylococci. Lysostaphin resistance of lyrA mutants is attributable to altered cell wall envelope properties and may in part be due to increased abundance of altered cross bridges. Other lyr mutants with intermediate lysostaphin resistance carried bursa aurealis insertions in genes specifying GTP pyrophosphokinase or enzymes of the purine biosynthetic pathway.  相似文献   

12.
AIMS: To develop a DNA microarray for analysis of genes encoding resistance determinants to erythromycin and the related macrolide, lincosamide and streptogramin B (MLS) compounds. METHODS AND RESULTS: We developed an oligonucleotide microarray containing seven oligonucleotide probes (oligoprobes) for each of the six genes (ermA, ermB, ermC, ereA, ereB and msrA/B) that account for more than 98% of MLS resistance in Staphylococcus aureus clinical isolates. The microarray was used to test reference and clinical S. aureus and Streptococcus pyrogenes strains. Target genes from clinical strains were amplified and fluorescently labelled using multiplex PCR target amplification. The microarray assay correctly identified the MLS resistance genes in the reference strains and clinical isolates of S. aureus, and the results were confirmed by direct DNA sequence analysis. Of 18 S. aureus clinical strains tested, 11 isolates carry MLS determinants. One gene (ermC) was found in all 11 clinical isolates tested, and two others, ermA and msrA/B, were found in five or more isolates. Indeed, eight (72%) of 11 clinical isolate strains contained two or three MLS resistance genes, in one of the three combinations (ermA with ermC, ermC with msrA/B, ermA with ermC and msrA/B). CONCLUSIONS: Oligonucleotide microarray can detect and identify the six MLS resistance determinants analysed in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggest that microarray-based detection of microbial antibiotic resistance genes might be a useful tool for identifying antibiotic resistance determinants in a wide range of bacterial strains, given the high homology among microbial MLS resistance genes.  相似文献   

13.
Recently, for the first time in the history of this bacterial species, methicillin-resistant Staphylococcus aureus (MRSA) carrying the enterococcal vanA gene complex and expressing high level resistance to vancomycin was identified in clinical specimens (CDC (2002) MMWR 51, 565-567). The purpose of our studies was to understand how vanA is expressed in the heterologous background of S. aureus and how it interacts with the mecA-based resistance mechanism, which is also present in these strains and is targeted on cell wall biosynthesis. The vanA-containing staphylococcal plasmid was transferred from the clinical vancomycin-resistant S. aureus (VRSA) strain HIP11714 (CDC (2002) MMWR 51, 565-567) to the methicillin-resistant S. aureus (MRSA) strain COL for which extensive genetic and biochemical information is available on staphylococcal cell wall biochemistry and drug resistance mechanisms. The transconjugant named COLVA showed high and homogeneous resistance to both oxacillin and vancomycin. COLVA grown in vancomycin-containing medium produced an abnormal peptidoglycan: all pentapeptides were replaced by tetrapeptides, and the peptidoglycan contained at least 22 novel muropeptide species that frequently showed a deficit or complete absence of pentaglycine branches. The UDP-MurNAc-pentapeptide, the major component of the cell wall precursor pool in vancomycin-sensitive cells was replaced by UDP-MurNAc-depsipeptide and UDP-MurNAc-tetrapeptide. Transposon inactivation of the beta-lactam resistance gene mecA caused complete loss of beta-lactam resistance but had no effect on the expression of vancomycin resistance. The two major antibiotic resistance mechanisms encoded by mecA and vanA residing in the same S. aureus appear to use different sets of enzymes for the assembly of cell walls.  相似文献   

14.
Our laboratory previously constructed mutants of Mycobacterium tuberculosis and Mycobacterium smegmatis with deletions in the genes for their major beta-lactamases, BlaC and BlaS, respectively, and showed that the mutants have increased susceptibilities to most beta-lactam antibiotics, particularly the penicillins. However, there is still a basal level of resistance in the mutants to certain penicillins, and the susceptibilities of the mutants to some cephalosporin-based beta-lactams are essentially the same as those of the wild types. We hypothesized that characterizing additional mutants (derived from beta-lactamase deletion mutants) that are hypersusceptible to beta-lactam antibiotics might reveal novel genes involved with other mechanisms of beta-lactam resistance, peptidoglycan assembly, and cell envelope physiology. We report here the isolation and characterization of nine beta-lactam antibiotic-hypersusceptible transposon mutants, two of which have insertions in genes known to be involved with peptidoglycan biosynthesis (ponA2 and dapB); the other seven mutants have insertions which affect novel genes. These genes can be classified into three groups: those involved with peptidoglycan biosynthesis, cell division, and other cell envelope processes. Two of the peptidoglycan-biosynthetic genes (ponA2 and pbpX) may encode beta-lactam antibiotic-resistant enzymes proposed to be involved with the synthesis of the unusual diaminopimelyl linkages within the mycobacterial peptidoglycan.  相似文献   

15.
BACKGROUND: beta-Lactam compounds are the most widely used antibiotics. They inactivate bacterial DD-transpeptidases, also called penicillin-binding proteins (PBPs), involved in cell-wall biosynthesis. The most common bacterial resistance mechanism against beta-lactam compounds is the synthesis of beta-lactamases that hydrolyse beta-lactam rings. These enzymes are believed to have evolved from cell-wall DD-peptidases. Understanding the biochemical and mechanistic features of the beta-lactam targets is crucial because of the increasing number of resistant bacteria. DAP is a D-aminopeptidase produced by Ochrobactrum anthropi. It is inhibited by various beta-lactam compounds and shares approximately 25% sequence identity with the R61 DD-carboxypeptidase and the class C beta-lactamases. RESULTS: The crystal structure of DAP has been determined to 1.9 A resolution using the multiple isomorphous replacement (MIR) method. The enzyme folds into three domains, A, B and C. Domain A, which contains conserved catalytic residues, has the classical fold of serine beta-lactamases, whereas domains B and C are both antiparallel eight-stranded beta barrels. A loop of domain C protrudes into the substrate-binding site of the enzyme. CONCLUSIONS: Comparison of the biochemical properties and the structure of DAP with PBPs and serine beta-lactamases shows that although the catalytic site of the enzyme is very similar to that of beta-lactamases, its substrate and inhibitor specificity rests on residues of domain C. DAP is a new member of the family of penicillin-recognizing proteins (PRPs) and, at the present time, its enzymatic specificity is clearly unique.  相似文献   

16.
17.
Girish TS  Sharma E  Gopal B 《FEBS letters》2008,582(19):2923-2930
Lysine biosynthesis is crucial for cell-wall formation in bacteria. Enzymes involved in lysine biosynthesis are thus potential targets for anti-microbial therapeutics. Dihydrodipicolinate synthase (DHDPS) catalyzes the first step of this pathway. Unlike its homologues, Staphylococcus aureus DHDPS is a dimer both in solution and in the crystal and is not feedback inhibited by lysine. The crystal structure of S. aureus DHDPS in the free and substrate bound forms provides a structural rationale for its catalytic mechanism. The structure also reveals unique conformational features of the S. aureus enzyme that could be crucial for the design of specific non-competitive inhibitors.  相似文献   

18.
Genetic and biochemical evidence was obtained for lysine catabolism via cadaverine and delta-aminovalerate in both the beta-lactam producer Streptomyces clavuligerus and the nonproducer Streptomyces lividans. This pathway is used when lysine is supplied as the sole source of nitrogen for the organism. A second pathway for lysine catabolism is present in S. clavuligerus but not in S. lividans. It leads to alpha-aminoadipate, a precursor for beta-lactam biosynthesis. Since it does not allow S. clavuligerus to grow on lysine as the sole nitrogen source, this pathway may be used exclusively to provide a precursor for beta-lactam biosynthesis. beta-Lactam producers were unable to grow well on alpha-aminoadipate as the only nitrogen source, whereas three of seven species not known to produce beta-lactam grew well under the same conditions. Lysine epsilon-aminotransferase, the initial enzyme in the alpha-aminoadipate pathway for lysine catabolism, was detected in cell extracts only from the beta-lactam producers. These results suggest that synthesis of alpha-aminoadipate is exclusively a secondary metabolic trait, present or expressed only in beta-lactam producers, while genes governing the catabolism of alpha-aminoadipate are present or fully expressed only in beta-lactam nonproducers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号