首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LaJeunessse and colleagues (LaJeunesse et al. 2005) have recently documented small genome sizes of Symbiodinium and concluded that Symbiodinium is a dinoflagellate lineage with the smallest genome. The conclusion is inconsistent with recent discoveries of picoplanktonic dinoflagellates. The search for the smallest genome and the effort to understand the evolutionary history of dinoflagellate genome should be an area of research in the years to come, which can be greatly aided by an understanding on the current hypotheses regarding mechanisms of genome size evolution. Even the smallest dinoflagellate genome documented to date is too large to be sequenced with current technology, but sequencing of chromosomes or expressed genes of key representative species is feasible and can be very insightful for understanding genome composition and function in this important lineage of eukaryotes.  相似文献   

2.
Many scleractinian corals must acquire their endosymbiotic dinoflagellates (genus Symbiodinium) anew each generation from environmental pools, and exchange between endosymbiotic and environmental pools of Symbiodinium (reef waters and sediments) has been proposed as a mechanism for optimizing coral physiology in the face of environmental change. Our understanding of the diversity of Symbiodinium spp. in environmental pools is poor by comparison to that engaged in endosymbiosis, which reflects the challenges of visualizing the genus against the backdrop of the complex and diverse micro‐eukaryotic communities found free‐living in the environment. Here, the molecular diversity of Symbiodinium living in the waters and sediments of a reef near Coconut Island, O‘ahu, Hawai‘i, sampled at four hourly intervals over a period of 5 d was characterized using a Symbiodinium‐specific hypervariable region of the chloroplast 23S. A comparison of Symbiodinium spp. diversity recovered from environmental samples with the endosymbiotic diversity in coral species that dominate the adjacent reef revealed limited overlap between these communities. These data suggest that the potential for infection, exchange, and/or repopulation of corals with Symbiodinium derived from the environment is limited at this location, a finding that is perhaps consistent with the high proportion of coral species in this geographic region that transmit endosymbionts from generation to generation.  相似文献   

3.
Symbiodinium is a diverse genus of unicellular dinoflagellate symbionts associating with various marine protists and invertebrates. Although the broadscale diversity and phylogenetics of the Symbiodinium complex is well established, there have been surprisingly few data on fine‐scale population structure and biogeography of these dinoflagellates. Yet population‐level processes contribute strongly to the biology of Symbiodinium, including how anthropogenic‐driven global climate change impacts these symbionts and their host associations. Here, we present a synthesis of population‐level characteristics for Symbiodinium, with an emphasis on how phylogenetic affinities, dynamics within and among host individuals, and a propensity towards clonality shape patterns on and across reefs. Major inferences include the following: (i) Symbiodinium populations within individual hosts are comprised mainly of cells belonging to a single or few genetic clones. (ii) Symbiont populations exhibit a mixed mode of reproduction, wherein at least one sexual recombination event occurs in the genealogy between most genotypes, but clonal propagation predominates overall. (iii) Mutualistic Symbiodinium do not perpetually persist outside their hosts, instead undergoing turnover and replacement via the continuous shedding of viable clonal cells from host individuals. (iv) Symbiont populations living in the same host, but on different reefs, are often genetically subdivided, suggesting low connectivity, adaptation to local conditions, or prolific asexual reproduction and low effective population sizes leading to disproportionate success within and among hosts. Overall, this synthesis forms a basis for future investigations of coral symbiosis ecology and evolution as well as delimitation of species boundaries in Symbiodinium and other eukaryotic microorganisms.  相似文献   

4.
Symbiodinium encompasses a diverse clade of dinoflagellates that are ecologically important as symbionts of corals and other marine organisms. Despite decades of study, cytological evidence of sex (karyogamy and meiosis) has not been demonstrated in Symbiodinium, although molecular population genetic patterns support the occurrence of sexual recombination. Here, we provide additional support for sex in Symbiodinium by uncovering six meiosis‐specific and 25 meiosis‐related genes in three published genomes. Cryptic sex may be occurring in Symbiodinium's seldom‐seen free‐living state while being inactive in the symbiotic state.  相似文献   

5.
6.
Symbiodinium spp. dinoflagellates are common symbionts of marine invertebrates. The cell‐surface glycan profile may determine whether a particular Symbiodinium is able to establish and maintain a stable symbiotic relationship. To characterize this profile, eight Symbiodinium cultures were examined using eight glycan‐specific fluorescent lectin probes. Confocal imaging and flow‐cytometric analysis were used to determine significant levels of binding of each probe to the cell surface. No significant variation in glycan profile was seen within each Symbiodinium culture, either over time or over growth phase. No cladal trends in glycan profile were found, but of note, two different Symbiodinium cultures (from clades A and B) isolated from one host species had very similar profiles, and two other cultures (from clades B and F) from different host species had identical profiles. Two lectin probes were particularly interesting: concanavalin A (ConA) and Griffonia simplicifolia‐II (GS‐II). The ConA probe showed significant binding to all Symbiodinium cultures, suggesting the widespread presence of cell‐surface mannose residues, while the GS‐II probe, which is specific for glycans possessing N‐acetyl groups, showed significant binding to six of eight Symbiodinium cultures. Other probes showed significant binding to the following percentage of Symbiodinium cultures examined: wheat germ agglutinin (WGA), 37.5%; peanut agglutinin (PNA), 50%; Helix pomatia agglutinin (HPA), 50%; phytohemagglutinin‐L (PHA‐L), 62.5%; soybean agglutinin (SBA), 50%; and Griffonia simplicifolia‐IB4 (GS‐IB4), 12.5%. This study highlights the complexity of cell‐surface glycan assemblages and their potential role in the discrimination of different dinoflagellate symbionts by cnidarian hosts.  相似文献   

7.
Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well‐separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE) and 13.3 (± 0.2 SE) μm. Unique among species in the genus, a high proportion (approximately 10–20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses.  相似文献   

8.
Many corals form obligate symbioses with photosynthetic dinoflagellates of the genus Symbiodinium Freudenthal (1962). These symbionts vary genotypically, with their geographical distribution and abundance dependent upon host specificity and tolerance to temperature and light variation. Despite the importance of these mutualistic relationships, the physiology and ecology of Symbiodinium spp. remain poorly characterized. Here, we report that rDNA internal transcribed spacer region 2 (ITS2) defined Symbiodinium type B2 associates with the cnidarian hosts Astrangia poculata and Oculina arbuscula from northerly habitats of the western Atlantic. Using pulse‐amplitude‐modulated (PAM) fluorometry, we compared maximum photochemical efficiency of PSII of type B2 to that of common tropical Symbiodinium lineages (types A3, B1, and C2) under cold‐stress conditions. Symbiont cultures were gradually cooled from 26°C to 10°C to simulate seasonal temperature declines. Cold stress decreased the maximum photochemical efficiency of PSII and likely the photosynthetic potential for all Symbiodinium clades tested. Cultures were then maintained at 10°C for a 2‐week period and gradually returned to initial conditions. Subsequent to low temperature stress, only type B2 displayed rapid and full recovery of PSII photochemical efficiency, whereas other symbiont phylotypes remained nonfunctional. These findings indicate that the distribution and abundance of Symbiodinium spp., and by extension their cnidarian hosts, in temperate climates correspond significantly with the photosynthetic cold tolerance of these symbiotic algae.  相似文献   

9.
Tremendous interspecific genome size variation is a well known phenomenon, whereas genome size within a species is supposed to be exceptionally stable and thus useful as a taxonomic trait. Using DAPI flow cytometry, we tested the stability of genome size in various representatives of Chenopodium s.s. (Amaranthaceae) across a broad geographical range (from Portugal to eastern Russia) in Eurasia. We sampled 1977 Chenopodium individuals of four different ploidies (di‐, tetra‐, hexa‐ and decaploids) from 347 populations. Intraspecific relative genome size variation was low, ranging from 2.0% in C. probstii to 7.7% in C. album, even in the species with broad distributions. We distinguished 12 homogeneous relative genome size groups among the 17 Chenopodium spp. tested. Genome size is useful for distinguishing certain morphologically similar groups of species such as C. suecicum/C. album, C. vulvaria/C. pamiricumC. iljinii/C. sosnowskyi/C. karoi. Due to its genome size stability, the cosmopolitan species C. album can be used as an alternative internal standard in flow‐cytometric analyses with the additional advantages of annual life cycle, self‐compatibility and common occurrence all over the world. Finally, we did not detect any sign of hybridization between Chenopodium spp. of different ploidies.  相似文献   

10.
Zooxanthellate corals (i.e. those harbouring Symbiodinium) are the main builders of the world's shallow‐water marine coral reefs. They represent intimate diverse symbioses between coral animals, single‐celled photosynthetic dinoflagellates (Symbiodinium spp.), other microscopic eukaryotes, prokaryotes and viruses. Crabs and other crustaceans, worms, sponges, bivalves and hydrozoans, fishes, sea urchins, octopuses and sea stars are itinerant members of these ‘rainforests of the sea’. This review focuses on the biodiversity of scleractinian coral animals and their best studied microscopic epi‐ and endosymbionts. In relation to coral‐associated species diversity, Symbiodinium internal transcribed spacer region sequence types tally 102–103 or up to ~15 different operational taxonomic units (OTUs, or putative species at the 97% sequence identity level; this cut‐off was chosen based on intragenomic sequence diversity observed in monoclonal cultures) and prokaryotes (mostly bacterial) total 102–104 OTUs. We analysed all publically accessible 16S rRNA gene sequence data and found Gammaproteobacteria were extremely abundant, followed by Alphaproteobacteria. Notably, Archaea were poorly represented and ‘unassigned OTUs’ were abundant in data generated by high‐throughput DNA sequencing studies of corals. We outline and compare model systems that could be used in future studies of the coral holobiont. In our future directions, we recommend a global coral sampling effort including substantial attention being paid to method of coral tissue acquisition, which compartments (mucus, tissue, skeleton) to explore, broadening the holobiont members considered and linking biodiversity with functional investigations.  相似文献   

11.
To investigate heterotrophic protists grazing on Symbiodinium sp., we tested whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oblea rotundata, Oxyrrhis marina, and Polykrikos kofoidii and the ciliates Balanion sp. and Parastrombidinopsis sp. preyed on the free‐living dinoflagellate Symbiodinium sp. (clade E). We measured the growth and ingestion rates of O. marina and G. dominans on Symbiodinium sp. as a function of prey concentration. Furthermore, we compared the results to those obtained for other algal prey species. In addition, we measured the growth and ingestion rates of other predators at single prey concentrations at which these rates of O. marina and G. dominans were saturated. All predators tested in the present study, except Balanion sp., preyed on Symbiodinium sp. The specific growth rates of O. marina and G. dominans on Symbiodinium sp. increased rapidly with increasing mean prey concentration < ca. 740–815 ng C/ml (7,400–8,150 cells/ml), but became saturated at higher concentrations. The maximum growth rates of O. marina and G. dominans on Symbiodinium sp. (0.87 and 0.61/d) were much higher than those of G. moestrupii and P. kofoidii (0.11 and 0.04/d). Symbiodinium sp. did not support positive growth of G. spirale, O. rotundata, and Parastrombidinopsis sp. However, the maximum ingestion rates of P. kofoidii and Parastrombidinopsis sp. (6.7–10.0 ng C/predator/d) were much higher than those of O. marina and G. dominans on Symbiodinium sp. (1.9–2.1 ng C/predator/d). The results of the present study suggest that Symbiodinium sp. may increase or maintain the populations of some predators.  相似文献   

12.
Bursts in species diversification are well documented among animals and plants, yet few studies have assessed recent adaptive radiations of eukaryotic microbes. Consequently, we examined the radiation of the most ecologically dominant group of endosymbiotic dinoflagellates found in reef‐building corals, Symbiodinium Clade C, using nuclear ribosomal (ITS2), chloroplast (psbAncr), and multilocus microsatellite genotyping. Through a hierarchical analysis of high‐resolution genetic data, we assessed whether ecologically distinct Symbiodinium, differentiated by seemingly equivocal rDNA sequence differences, are independent species lineages. We also considered the role of host specificity in Symbiodinium speciation and the correspondence between endosymbiont diversification and Caribbean paleo‐history. According to phylogenetic, biological, and ecological species concepts, Symbiodinium Clade C comprises many distinct species. Although regional factors contributed to population‐genetic structuring of these lineages, Symbiodinium diversification was mainly driven by host specialization. By combining patterns of the endosymbiont's host specificity, water depth distribution, and phylogeography with paleo‐historical signals of climate change, we inferred that present‐day species diversity on Atlantic coral reefs stemmed mostly from a post‐Miocene adaptive radiation. Host‐generalist progenitors spread, specialized, and diversified during the ensuing epochs of prolonged global cooling and change in reef‐faunal assemblages. Our evolutionary reconstruction thus suggests that Symbiodinium undergoes “boom and bust” phases in diversification and extinction during major climate shifts.  相似文献   

13.
We previously reported the occurrence of genetically‐diverse symbiotic dinoflagellates (zooxanthellae) within and between 7 giant clam species (Tridacnidae) from the Philippines based on the algal isolates' allozyme and random amplified polymorphic DNA (RAPD) patterns. We also reported that these isolates all belong to clade A of the Symbiodinium phylogeny with identical 18S rDNA sequences. Here we extend the genetic characterization of Symbiodinium isolates from giant clams and propose that they are conspecific. We used the combined DNA sequences of the internal transcribed spacer (ITS)1, 5.8S rDNA, and ITS2 regions (rDNA‐ITS region) because the ITS1 and ITS2 regions evolve faster than 18S rDNA and have been shown to be useful in distinguishing strains of other dinoflagellates. DGGE of the most variable segment of the rDNA‐ITS region, ITS1, from clonal representatives of clades A, B, and C showed minimal intragenomic variation. The rDNA‐ITS region shows similar phylogenetic relationships between Symbiodinium isolates from symbiotic bivalves and some cnidarians as does 18S rDNA, and that there are not many different clade A species or strains among cultured zooxanthellae (CZ) from giant clams. The CZ from giant clams had virtually identical sequences, with only a single nucleotide difference in the ITS2 region separating two groups of isolates. These data suggest that there is one CZ species and perhaps two CZ strains, each CZ strain containing individuals that have diverse allozyme and RAPD genotypes. The CZ isolated from giant clams from different areas in the Philippines (21 isolates, 7 clam species), the Australian Great Barrier Reef (1 isolate, 1 clam species), Palau (8 isolates, 7 clam species), and Okinawa, Japan (1 isolate, 1 clam species) shared the same rDNA‐ITS sequences. Furthermore, analysis of fresh isolates from giant clams collected from these geographical areas shows that these bivalves also host indistinguishable clade C symbionts. These data demonstrate that conspecific Symbiodinium genotypes, particularly clade A symbionts, are distributed in giant clams throughout the Indo‐Pacific.  相似文献   

14.
Symbiodinium are a diverse group of unicellular dinoflagellates that are important nutritional symbionts of reef‐building corals. Symbiodinium putative species (‘types’) are commonly identified with genetic markers, mostly nuclear and chloroplast encoded ribosomal DNA regions. Population genetic analyses using microsatellite loci have provided insights into Symbiodinium biogeography, connectivity and phenotypic plasticity, but are complicated by: (i) a lack of consensus criteria used to delineate inter‐ vs. intragenomic variation within species; and (ii) the high density of Symbiodinium in host tissues, which results in single samples comprising thousands of individuals. To address this problem, Wham & LaJeunesse (2016) present a method for identifying cryptic Symbiodinium species from microsatellite data based on correlations between allele size distributions and nongeographic genetic structure. Multilocus genotypes that potentially do not recombine in sympatry are interpreted as secondary ‘species’ to be discarded from downstream population genetic analyses. However, Symbiodinium species delineations should ideally incorporate multiple physiological, ecological and molecular criteria. This is because recombination tests may be a poor indicator of species boundaries in Symbiodinium due to their predominantly asexual mode of reproduction. Furthermore, discontinuous microsatellite allele sizes in sympatry may be explained by secondary contact between previously isolated populations and by mutations that occur in a nonstepwise manner. Limitations of using microsatellites alone to delineate species are highlighted in earlier studies that demonstrate occasional bimodal distributions of allele sizes within Symbiodinium species and considerable allele size sharing among Symbiodinium species. We outline these issues and discuss the validity of reinterpretations of our previously published microsatellite data from Symbiodinium populations on the Great Barrier Reef (Howells et al. 2013).  相似文献   

15.
Indo‐Pacific reef corals growing for years in closed‐system aquaria provide an alternate means to investigate host–symbiont specificity and stability. The diversity of dinoflagellate endosymbionts (Symbiodinium spp.) from coral communities in private and public aquaria was investigated using molecular‐genetic analyses. Of the 29 symbiont types (i.e., species) identified, 90% belonged to the most prevalent group of Symbiodinium harbored by Indo‐Pacific reef corals, Clade C, while the rest belonged to Clade D. Sixty‐five percent of all types were known from field surveys conducted throughout the Pacific and Indian oceans. Because specific coral–dinoflagellate partnerships appear to have defined geographic distributions, correspondence of the same symbionts in aquarium and field‐collected specimens identifies regions where particular colonies must have been collected in the wild. Symbiodinium spp. in clade D, believed to be “stress‐tolerant” and/or “opportunistic,” occurred in a limited number of individual colonies. The absence of a prevalent, or “weedy,” symbiont suggests that conditions under which aquarium corals are grown do not favor competitive replacements of their native symbiont populations. The finding of typical and diverse assemblages of Symbiodinium spp. among aquarium corals living many years under variable chemical/physical conditions, artificial and natural light, while undergoing fragmentation periodically, indicates that individual colonies maintain stable, long‐term symbiotic associations.  相似文献   

16.
Nuclear genome size of conifers as measured by flow cytometry with propidium iodide was investigated, striving to collect at least a single species from each genus. 64 out of 67 genera and 172 species were measured. Of the 67 genera, 21 are reported here for the first time and the same is true for 76 species. This nearly doubles the number of measured genera and adds 50% to the number of analyzed species. Conifers have chromosome numbers in the range of n = (7)10–12(19). However, the nuclear DNA content (2C‐value) is shown here to range from 8.3 to 71.6 picogram. The largest genome contains roughly 6 × 1010 more base pairs than the smallest genome. Genome sizes are evaluated and compared with available taxonomic treatments. For the mainly (sub)tropical Podocarpaceae small genome sizes were found with a 2C‐value of only 8–28 pg, with 13.5 pg on average. For the Taxaceae 2C‐values from 23–60 pg were determined. Not surprisingly, the genus Pinus with 97 species (39 species measured here) has a broad range with 2C = 38–72 pg. A factor of 2 difference is also found in the Cupressaceae (136 species) with nuclear DNA contents in the range 18–35 pg. Apart from the allohexaploid Sequoia, ploidy plays a role only in Juniperus and some new polyploids are found. The data on genome size support conclusions on phylogenetic relationships obtained by DNA sequencing. Flow cytometry is applicable even to young plants or seeds for the monitoring of trade in endangered species.  相似文献   

17.
18.
Water quality, microbial contamination, prior fish health, and variable results have been major impediments to identifying the cause and mechanism of fish mortality in standard aquarium‐format Pfiesteria bioassays. Therefore, we developed a sensitive 96‐h larval fish bioassay for assessing Pfiesteria spp. pathogenicity using six‐well tissue culture plates and 7‐day‐old larval cyprinodontid fish. We used the assay to test pathogenicity of several clonal lines of Pfiesteria piscicida Steidinger and Burkholder and P. shumwayae Glasgow and Burkholder that had been cultured with algal prey for 2 to 36 months. The P. shumwayae cultures exhibited 80%–100% cumulative mortality in less than 96 h at initial zoospore densities of approximately 1000 cells·mL?1. No fish mortalities occurred with P. piscicida at identical densities or in controls. In a dose‐response assay, we demonstrated a strong positive correlation between dinospore density and fish mortality in a highly pathogenic culture of P. shumwayae, generating a 96‐h LD50 of 108 zoospores·mL?1. Additionally, we applied the assay to evaluate a 38‐L P. shumwayae bioassay that was actively killing fish and compared results with those from exposures of juvenile tilapia (Oreochromis niloticus) in a 500‐mL assay system. Water from the fish‐killing 38‐L assay was filtered and centrifuged to produce fractions dominated by dinoflagellates, bacteria, or presumed ichthyotoxin (cell‐free fraction). After 96 h, the larval fish assay exhibited 50%–100% cumulative mortality only in fractions containing dinoflagellates, with no mortalities occurring in the other fractions. The 500‐mL bioassay with tilapia produced inconsistent results and demonstrated no clear correlation between mortality and treatment. The new larval fish bioassay was demonstrated as a highly effective method to verify and evaluate dinoflagellate pathogenicity.  相似文献   

19.
20.
We examined a free‐living Symbiodinium species by light and electron microscopy and nuclear‐encoded partial LSU rDNA sequence data. The strain was isolated from a net plankton sample collected in near‐shore waters at Tenerife, the Canary Islands. Comparing the thecal plate tabulation of the free‐living Symbiodinium to that of S. microadriaticum Freud., it became clear that a few but significant differences could be noted. The isolate possessed two rather than three antapical plates, six rather than seven to eight postcingular plates, and finally four rather than five apical plates. The electron microscopic study also revealed the presence of an eyespot with brick‐shaped contents in the sulcal region and a narrow anterior plate with small knob‐like structures. Bayesian analysis revealed the free‐living Symbiodinium to be a member of the earliest diverging clade A. However, it did not group within subclade AI (=temperate A) or any other subclades within clade A. Rather, it occupied an isolated position, and this was also supported by sequence divergence estimates. On the basis of comparative analysis of the thecal plate tabulation and the inferred phylogeny, we propose that the Symbiodinium isolate from Tenerife is a new species (viz. S. natans). To elucidate further the species diversity of Symbiodinium, particularly those inhabiting coral reefs, we suggest combining morphological features of the thecal plate pattern with gene sequence data. Indeed, future examination of motile stages originating from symbiont isolates will demonstrate if this proves a feasible way to identify and characterize additional species of Symbiodinium and thus match ribotypes or clusters of ribotypes to species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号