首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used comparative genomics and experimental analyses to show that (1) eukaryotes and archaea, which possess the selenocysteine (Sec) protein insertion machinery contain an enzyme, O-phosphoseryl-transfer RNA (tRNA)[Ser]Sec kinase (designated PSTK), which phosphorylates seryl-tRNA[Ser]Sec to form O-phosphoseryl-tRNA[Ser]Sec and (2) the Sec synthase (SecS) in mammals is a pyridoxal phosphate-containing protein previously described as the soluble liver antigen (SLA). SecS uses the product of PSTK, O-phosphoseryl-tRNA[Ser]Sec, and selenophosphate as substrates to generate selenocysteyl-tRNA[Ser]Sec. Sec could be synthesized on tRNA[Ser]Sec from selenide, adenosine triphosphate (ATP), and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, PSTK, selenophosphate synthetase, and SecS. The enzyme that synthesizes monoselenophosphate is a previously identified selenoprotein, selenophosphate synthetase 2 (SPS2), whereas the previously identified mammalian selenophosphate synthetase 1 did not serve this function. Monoselenophosphate also served directly in the reaction replacing ATP, selenide, and SPS2, demonstrating that this compound was the active selenium donor. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that contain selenoproteins. X.-M. Xu and B. A. Carlson contributed equally to the studies described herein.  相似文献   

2.
K Forchhammer  K Boesmiller  A B?ck 《Biochimie》1991,73(12):1481-1486
The selAB operon codes for the proteins selenocysteine synthase and SELB which catalyse the synthesis and cotranslational insertion of selenocysteine into protein. This communication deals with the biochemical characterisation of these proteins and in particular with their specific interaction with the selenocysteine-incorporating tRNA(Sec). Selenocysteine synthase catalyses the synthesis of selenocysteyl-tRNA(Sec) from seryl-tRNA(Sec) in a pyridoxal phosphate-dependent reaction mechanism. The enzyme specifically recognizes the tRNA(Sec) molecule; a cooperative interaction between the tRNA binding site and the catalytically active pyridoxal phosphate site is suggested. SELB is an EF-Tu-like protein which specifically complexes selenocysteyl-tRNA(Sec). Interaction with the selenol group of the side chain of the aminoacylated residue is a prerequisite for the formation of a stable SELB.tRNA complex. Mechanistically, this provides the biochemical basis for the exclusive selection of selenocysteyl-tRNA(Sec) in the decoding step of a selenocysteine-specific UGA triplet.  相似文献   

3.
Biosynthesis of selenocysteine on its tRNA in eukaryotes   总被引:2,自引:0,他引:2  
Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA[Ser]Sec as substrates to generate selenocysteyl-tRNA[Ser]Sec. Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, O-phosphoseryl-tRNA[Ser]Sec kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA[Ser]Sec kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins.  相似文献   

4.
Selenocysteine incorporation in eukaryotes occurs cotranslationally at UGA codons via the interactions of RNA-protein complexes, one comprised of selenocysteyl (Sec)-tRNA([Ser]Sec) and its specific elongation factor, EFsec, and another consisting of the SECIS element and SECIS binding protein, SBP2. Other factors implicated in this pathway include two selenophosphate synthetases, SPS1 and SPS2, ribosomal protein L30, and two factors identified as binding tRNA([Ser]Sec), termed soluble liver antigen/liver protein (SLA/LP) and SECp43. We report that SLA/LP and SPS1 interact in vitro and in vivo and that SECp43 cotransfection increases this interaction and redistributes all three proteins to a predominantly nuclear localization. We further show that SECp43 interacts with the selenocysteyl-tRNA([Ser]Sec)-EFsec complex in vitro, and SECp43 coexpression promotes interaction between EFsec and SBP2 in vivo. Additionally, SECp43 increases selenocysteine incorporation and selenoprotein mRNA levels, the latter presumably due to circumvention of nonsense-mediated decay. Thus, SECp43 emerges as a key player in orchestrating the interactions and localization of the other factors involved in selenoprotein biosynthesis. Finally, our studies delineating the multiple, coordinated protein-nucleic acid interactions between SECp43 and the previously described selenoprotein cotranslational factors resulted in a model of selenocysteine biosynthesis and incorporation dependent upon both cytoplasmic and nuclear supramolecular complexes.  相似文献   

5.
The micronutrient selenium is present in proteins as selenocysteine (Sec). In eukaryotes and archaea, Sec is formed in a tRNA-dependent conversion of O-phosphoserine (Sep) by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS). Here, we present the crystal structure of Methanococcus maripaludis SepSecS complexed with PLP at 2.5 Å resolution. SepSecS, a member of the Fold Type I PLP enzyme family, forms an (α2)2 homotetramer through its N-terminal extension. The active site lies on the dimer interface with each monomer contributing essential residues. In contrast to other Fold Type I PLP enzymes, Asn247 in SepSecS replaces the conserved Asp in binding the pyridinium nitrogen of PLP. A structural comparison with Escherichia coli selenocysteine lyase allowed construction of a model of Sep binding to the SepSecS catalytic site. Mutations of three conserved active site arginines (Arg72, Arg94, Arg307), protruding from the neighboring subunit, led to loss of in vivo and in vitro activity. The lack of active site cysteines demonstrates that a perselenide is not involved in SepSecS-catalyzed Sec formation; instead, the conserved arginines may facilitate the selenation reaction. Structural phylogeny shows that SepSecS evolved early in the history of PLP enzymes, and indicates that tRNA-dependent Sec formation is a primordial process.  相似文献   

6.
Selenophosphate synthetase (SPS) catalyzes the activation of selenide with adenosine 5'-triphosphate (ATP) to generate selenophosphate, the essential reactive selenium donor for the formation of selenocysteine (Sec) and 2-selenouridine residues in proteins and RNAs, respectively. Many SPS are themselves Sec-containing proteins, in which Sec replaces Cys in the catalytically essential position (Sec/Cys). We solved the crystal structures of Aquifex aeolicus SPS and its complex with adenosine 5'-(alpha,beta-methylene) triphosphate (AMPCPP). The ATP-binding site is formed at the subunit interface of the homodimer. Four Asp residues coordinate four metal ions to bind the phosphate groups of AMPCPP. In the free SPS structure, the two loop regions in the ATP-binding site are not ordered, and no enzyme-associated metal is observed. This suggests that ATP binding, metal binding, and the formation of their binding sites are interdependent. To identify the amino-acid residues that contribute to SPS activity, we prepared six mutants of SPS and examined their selenide-dependent ATP consumption. Mutational analyses revealed that Sec/Cys13 and Lys16 are essential. In SPS.AMPCPP, the N-terminal loop, including the two residues, assumes different conformations ("open" and "closed") between the two subunits. The AMPCPP gamma-phosphate group is solvent-accessible, suggesting that a putative nucleophile could attack the ATP gamma-phosphate group to generate selenophosphate and adenosine 5'-diphosphate (ADP). Selenide attached to Sec/Cys13 as -Se-Se(-)/-S-Se(-) could serve as the nucleophile in the "closed" conformation. A water molecule, fixed close to the beta-phosphate group, could function as the nucleophile in subsequent ADP hydrolysis to orthophosphate and adenosine 5'-monophosphate.  相似文献   

7.
Active bovine selenophosphate synthetase 2, not having selenocysteine   总被引:1,自引:0,他引:1  
During the course of studying selenocysteine (Sec) synthesis mechanisms in mammals, we prepared selenophosphate synthetase (SPS) from bovine liver by 4-step chromatography. In the last step of chromatography of hydroxyapatite, we found a protein band of molecular mass 33 kDa on SDS-PAGE, consistent with the pattern of SPS activity that was indirectly manifested by [75Se]Sec production activity; however, we could not detect significant Se content in this active fraction. We also found a clear band of 33 kDa by Western blotting with antibody against a common peptide (387-401) in SPS2. We detected selenophosphate as the product of this active enzyme in the reaction mixture, composed of ATP, [75Se]H2Se and SPS. Chemically synthesized selenophosphate plays a role in Sec synthesis, not the addition of this enzyme. These results support that the product of SPS2 is selenophosphate itself. During this investigation, the probable sequence of bovine SPS2 not having Sec was reported in the blast information and the molecular mass was near with the protein in this report. Thus, bovine active SPS2 of molecular mass 33 kDa does not contain Sec. K. Furumiya and K. Kanaya contributed equally to this work.  相似文献   

8.
Recently, a mammalian tRNA which was previously designated as an opal suppressor seryl-tRNA and phosphoseryl-tRNA was shown to be a selenocysteyl-tRNA (B. J. Lee, P. J. Worland, J. N. Davis, T. C. Stadtman, and D. Hatfield, J. Biol. Chem. 264:9724-9727, 1989). Hence, this tRNA is now designated as selenocysteyl-tRNA[Ser]Sec, and its function is twofold, to serve as (i) a carrier molecule upon which selenocysteine is biosynthesized and (ii) as a donor of selenocysteine, which is the 21st naturally occurring amino acid of protein, to the nascent polypeptide chain in response to specific UGA codons. In the present study, the selenocysteine tRNA gene was sequenced from Xenopus laevis, Drosophila melanogaster, and Caenorhabditis elegans. The tRNA product of this gene was also identified within the seryl-tRNA population of a number of higher and lower animals, and the human tRNA[Ser]Sec gene was used as a probe to identify homologous sequences within genomic DNAs of organisms throughout the animal kingdom. The studies showed that the tRNA[Ser]Sec gene has undergone evolutionary change and that it is ubiquitous in the animal kingdom. Further, we conclude that selenocysteine-containing proteins, as well as the use of UGA as a codon for selenocysteine, are far more widespread in nature than previously thought.  相似文献   

9.
Since the discovery of selenocysteine as the 21st amino acid considerable progress has been made in elucidating the system responsible for its insertion into proteins. Elongation factor SELB, whose amino-terminal part shows homology to EF-Tu, was found to be the key component mediating delivery of selenocysteyl-tRNA(Sec) to the ribosomal A site. It exhibits a distinct tertiary structure comprising binding sites for guanosine nucleotides, the cognate tRNA, an mRNA secondary structure (SECIS element) and presumably ribosomal components. The kinetics of interaction of SELB with its ligands have been studied in detail. GDP was found to bind with about 20-fold lower affinity than GTP and to be in rapid exchange, which obviates the need for a guanosine nucleotide exchange factor. The affinity of SELB for the SECIS element is in the range of 1 nM and further increases upon binding of selenocysteyl-tRNA(Sec) to the protein. This supports the model that SELB forms a tight quaternary complex on the SECIS element which is loosened after insertion of the tRNA into the ribosomal A site and the concomitant hydrolysis of GTP.  相似文献   

10.
Eukaryotic selenocysteine (Sec) protein insertion machinery was thought to be restricted to animals, but the occurrence of both Sec-containing proteins and the Sec insertion system was recently found in Chlamydomonas reinhardtii, a member of the plant kingdom. Herein, we used RT-PCR to determine the sequence of C. reinhardtii Sec tRNA[Ser]Sec, the first non-animal eukaryotic Sec tRNA[Ser]Sec sequence. Like its animal counterpart, it is 90 nucleotides in length, is aminoacylated with serine by seryl-tRNA synthetase, and decodes specifically UGA. Evolutionary analyses of known Sec tRNAs identify the C. reinhardtii form as the most diverged eukaryotic Sec tRNA[Ser]Sec and reveal a common origin for this tRNA in bacteria, archaea, and eukaryotes.  相似文献   

11.
The allosteric transition of Escherichia coli aspartate transcarbamylase involves significant alterations in structure at both the quaternary and tertiary levels. On the tertiary level, the 240s loop (residues 230-245 of the catalytic chain) repositions, influencing the conformation of Arg-229, a residue near the aspartate binding site. In the T state, Arg-229 is bent out of the active site and may be stabilized in this position by an interaction with Glu-272. In the R state, the conformation of Arg-229 changes, allowing it to interact with the beta-carboxylate of aspartate, and is stabilized in this position by a specific interaction with Glu-233. In order to ascertain the function of Arg-229, Glu-233, and Glu-272 in the catalytic and cooperative interactions of the enzyme, three mutant enzymes were created by site-specific mutagenesis. Arg-229 was replaced by Ala, while both Glu-233 and Glu-272 were replaced by Ser. The Arg-229----Ala and Glu-233----Ser enzymes exhibit 10,000-fold and 80-fold decreases in maximal activity, respectively, and they both exhibit a 2-fold increase in the aspartate concentration at half the maximal observed velocity, [S]0.5. The Arg-229----Ala enzyme still exhibits substantial homotropic cooperativity, but all cooperativity is lost in the Glu-233----Ser enzyme. The Glu-233----Ser enzyme also shows a 4-fold decrease in the carbamyl phosphate [S]0.5, while the Arg-229----Ala enzyme shows no change in the carbamyl phosphate [S]0.5 compared to the wild-type enzyme. The Glu-272 to Ser mutation results in a slight reduction in maximal activity, an increase in [S]0.5 for both aspartate and carbamyl phosphate, and reduced cooperativity. Analysis of the isolated catalytic subunits from these three mutant enzymes reveals that in each case the changes in the kinetic properties of the isolated catalytic subunit are similar to the changes caused by the mutation in the holoenzyme. PALA was able to activate the Glu-233----Ser enzyme, at low aspartate concentrations, even though the mutant holoenzyme did not exhibit any cooperativity, indicating that cooperative interactions still exist between the active sites in this enzyme. It is proposed that Glu-233 of the 240s loop helps create the high-activity-high-affinity R state by positioning the side chain of Arg-229 for aspartate binding while Glu-272 helps stabilize the low-activity-low-affinity T state by positioning the side chain of Arg-229 so that it cannot interact with aspartate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Pyridoxal 5'-phosphate (PLP) inhibits DNA polymerase activity of the intact multifunctional DNA polymerase alpha complex by binding at either of two sites which can be distinguished on the basis of differential substrate protection. One site (PLP site 1) corresponds to an important nucleotide-binding site which is distinct from the DNA polymerase active site and which appears to correspond to the DNA primase active site while the second site (PLP site 2) corresponds to the dNTP binding domain of the DNA polymerase active site. A method for the enzymatic synthesis of high specific activity [32P]PLP is described and this labeled PLP was used to identify the binding sites described above. PLP inhibition of DNA polymerase alpha activity was shown to involve the binding of only a few (one to two) molecules of PLP/molecule of DNA polymerase alpha, and this label is primarily found on the 148- and 46-kDa subunits although the 63-, 58-, and 49-kDa subunits are labeled to a lesser extent. Labeling of the 46-kDa subunit by [32P]PLP is the only labeling on the enzyme which is blocked or even diminished in the presence of nucleotide alone, and, therefore, this 46-kDa subunit contains PLP site 1. Labeling of the 148-kDa subunit is enhanced in the presence of template-primer, suggesting that this subunit undergoes a conformational change upon binding template-primer. Furthermore, labeling of the 148-kDa subunit is the only labeling on the enzyme which can be specifically blocked only by the binding of both template-primer and the correct dNTP in a stable ternary complex. Therefore, the 148-kDa subunit contains PLP site 2, which corresponds to the dNTP binding domain of the DNA polymerase active site.  相似文献   

13.
Selenocysteine (Sec) is inserted into selenoproteins co-translationally with the help of various cis- and trans-acting factors. The specific mechanisms of Sec biosynthesis and insertion into protein in eukaryotic cells, however, are not known. Two proteins, SECp43 and the soluble liver antigen (SLA), were previously reported to interact with tRNA([Ser]Sec), but their functions remained elusive. Herein, we report that knockdown of SECp43 in NIH3T3 or TCMK-1 cells using RNA interference technology resulted in a reduction in the level of methylation at the 2'-hydroxylribosyl moiety in the wobble position (Um34) of Sec tRNA([Ser]Sec), and consequently reduced glutathione peroxidase 1 expression. Double knockdown of SECp43 and SLA resulted in decreased selenoprotein expression. SECp43 formed a complex with Sec tRNA([Ser]Sec) and SLA, and the targeted removal of one of these proteins affected the binding of the other to Sec tRNA([Ser]Sec). SECp43 was located primarily in the nucleus, whereas SLA was found in the cytoplasm. Co-transfection of both proteins resulted in the nuclear translocation of SLA suggesting that SECp43 may also promote shuttling of SLA and Sec tRNA([Ser]Sec) between different cellular compartments. Taken together, these data establish the role of SECp43 and SLA in selenoprotein biosynthesis through interaction with tRNA([Ser]Sec) in a multiprotein complex. The data also reveal a role of SECp43 in regulation of selenoprotein expression by affecting the synthesis of Um34 on tRNA([Ser]Sec) and the intracellular location of SLA.  相似文献   

14.
The nucleotide sequence of the selA gene from Escherichia coli whose product is involved in the conversion of seryl-tRNA(Sec UCA) into selenocysteyl-tRNA(Sec UCA) was determined. selA codes for a polypeptide of a calculated Mr of 50,667; a protein of appropriate size was synthesized in vivo in a T7 promoter/polymerase system. An assay for SELA activity was devised which is based on the seryl-tRNA(Sec UCA)-dependent incorporation of [75Se] selenium into acid-insoluble material. It was used to follow SELA purification from cells that overproduced the protein from a phage T7 promoter plasmid. Purified native SELA protein migrates in gel filtration experiments with a native Mr of about 600,000. SELA contains 1 mol of bound pyridoxal 5-phosphate/mol of 50-kDa subunit. Evidence is presented that the overall conversion of seryl-tRNA(Sec UCA) to selenocysteyl-tRNA(Sec UCA) occurs at the SELA protein. SELA, therefore, has the function of a selenocysteine synthase.  相似文献   

15.
Recent investigations have shown that the rhodanese domains, ubiquitous structural modules which might represent an example of conserved structures with possible functional diversity, are structurally related to the catalytic subunit of Cdc25 phosphatase enzymes. The major difference characterizing the active-site of the Azotobacter vinelandii rhodanese RhdA, with respect to the closely related Cdc25s (A, B, C), is that in Cdc25 phosphatases the active site loop [His-Cys-(X)5-Arg] is one residue longer than in RhdA [His-Cys-(X)4-Arg]. According to the hypothesis that the length of the RhdA active-site loop should play a key role in substrate recognition and catalytic activity, RhdA scaffold was the starting point for producing mutants with single-residue insertion to generate the catalytic loop HCQTHAHR (in RhdA-Ala) and HCQTHSHR (in RhdA-Ser). Analyses of the catalytic performances of the engineered RhdAs revealed that elongation of the catalytic loop definitely compromised the ability to catalyze sulfur transfer reactions, while it generated 'phosphatase' enzymes able to interact productively with the artificial substrate 3-O-methylfluorescein phosphate. Although this study is restricted to an example of rhodanese modules (RhdA), it provided experimental evidence of the hypothesis that a specific mutational event (a single-residue insertion or deletion in the active-site loop) could change the selectivity from sulfur- to phosphate-containing substrates (or vice versa).  相似文献   

16.
Mutations in selC, which reduce the 8-base pair aminoacyl-acceptor helix to the canonical 7-base pair length (tRNA(Sec)(delAc] or which replace the extra arm of tRNA(Sec) by that of a serine acceptor tRNA species (tRNA(Sec)(ExS), block the function in selenoprotein synthesis in vivo (Baron, C., Heider, J., and B?ck, A. (1990) Nucleic Acids Res. 18, 6761-6766). tRNA(Sec), tRNA(Sec)(delAc), and tRNA(Sec)(ExS) were purified and analyzed for their interaction with purified seryl-tRNA synthetase, selenocysteine synthase and translation factors SELB and EF-Tu. It was found that seryl-tRNA synthetase displays 10-fold impaired Km and Kcat values for tRNA(Sec) in comparison to tRNA(Ser), decreasing the overall charging efficiency (Kcat/Km) of tRNA(Sec) to 1% of that characteristic for tRNA(Ser). tRNA(Sec)(ExS) was a less efficient substrate for the enzyme (Kcat/Km 0.2% of the tRNA(Ser) value) whereas the tRNA(Ser)(delAc) variant was charged with an approximately 2-3-fold improved rate compared to wild-type tRNA(Sec). Both mutant tRNA variants, when charged with L-serine, were able to interact with selenocysteine synthase to give rise to selenocysteyl-tRNA with tRNA(Sec)(ExS) being as efficient as wild-type tRNA(Sec). Seryl-tRNA(Sec)(delAc), on the other hand, was selenylated very slowly. Reduction of the length of the aminoacyl-acceptor stem to 7 base pairs prevented the interaction with translation factor SELB but allowed binding to EF-Tu, irrespective of whether tRNA(Sec)(delAc) was charged with serine or selenocysteine. The aminoacyl-acceptor helix of tRNA(Sec), therefore, is a major determinant directing binding to SELB and precluding interaction with EF-Tu.  相似文献   

17.
The biosynthesis of histidine is a central metabolic process in organisms ranging from bacteria to yeast and plants. The seventh step in the synthesis of histidine within eubacteria is carried out by a pyridoxal-5'-phosphate (PLP)-dependent l-histidinol phosphate aminotransferase (HisC, EC 2.6.1.9). Here, we report the crystal structure of l-histidinol phosphate aminotransferase from Escherichia coli, as a complex with pyridoxamine-5'-phosphate (PMP) at 1.5 A resolution, as the internal aldimine with PLP, and in a covalent, tetrahedral complex consisting of PLP and l-histidinol phosphate attached to Lys214, both at 2.2 A resolution. This covalent complex resembles, in structural terms, the gem-diamine intermediate that is formed transiently during conversion of the internal to external aldimine.HisC is a dimeric enzyme with a mass of approximately 80 kDa. Like most PLP-dependent enzymes, each HisC monomer consists of two domains, a larger PLP-binding domain having an alpha/beta/alpha topology, and a smaller domain. An N-terminal arm contributes to the dimerization of the two monomers. The PLP-binding domain of HisC shows weak sequence similarity, but significant structural similarity with the PLP-binding domains of a number of PLP-dependent enzymes. Residues that interact with the PLP cofactor, including Tyr55, Asn157, Asp184, Tyr187, Ser213, Lys214 and Arg222, are conserved in the family of aspartate, tyrosine and histidinol phosphate aminotransferases. The imidazole ring of l-histidinol phosphate is bound, in part, through a hydrogen bond with Tyr110, a residue that is substituted by Phe in the broad substrate specific HisC enzymes from Zymomonas mobilis and Bacillus subtilis.Comparison of the structures of the HisC internal aldimine, the PMP complex and the HisC l-histidinol phosphate complex reveal minimal changes in protein or ligand structure. Proton transfer, required for conversion of the gem-diamine to the external aldimine, does not appear to be limited by the distance between substrate and lysine amino groups. We propose that the tetrahedral complex has resulted from non-productive binding of l-histidinol phosphate soaked into the HisC crystals, resulting in its inability to be converted to the external aldimine at the HisC active site.  相似文献   

18.
The presence of a unique opal suppressor seryl-tRNA in higher vertebrates which is converted to phosphoseryl-tRNA has been known for several years, but its function has been uncertain (see Hatfield, D. (1985) Trends Biochem. Sci. 10, 201-204 for review). In the present study, we demonstrate that this tRNA species also occurs in vivo as selenocysteyl-tRNA(Ser) suggesting that it functions both as a carrier molecule upon which selenocysteine is synthesized and as a direct selenocysteine donor to a growing polypeptide chain in response to specific UGA codons. [75Se]Seleno[3H]cysteyl-tRNA(Ser) formed by administering 75Se and [3H]serine to rat mammary tumor cells (TMT-081-MS) in culture was isolated from the cell extract. The amino acid attached to the tRNA was identified as selenocysteine following its deacylation and reaction with iodoacetate and 3-bromopropionate. The resulting alkyl derivatives co-chromatographed on an amino acid analyzer with authentic carboxymethylselenocysteine and carboxyethylselenocysteine. Seryl-tRNA(Ser) and phosphoseryl-tRNA(Ser) (Hatfield, D., Diamond, A., and Dudock, B. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6215-6219), which co-migrate on a reverse phase chromatographic column with selenocysteyl-tRNA(Ser), were also identified in extracts of TMT-018-MS cells. Hence, we propose that a metabolic pathway for selenocysteine synthesis in mammalian cells is the conversion of seryl-tRNA(Ser) via phosphoseryl-tRNA(Ser) to selenocysteyl-tRNA(Ser). In a ribosomal binding assay selenocysteyl-tRNA(Ser) recognizes UGA but not any of the serine codons. Selenocysteyl-tRNA(Ser) is deacylated more readily than seryl-tRNA(Ser) (i.e. 58% deacylation during 15 min at pH 8.0 and 37 degrees C as compared to 41%).  相似文献   

19.
Selenocysteine (Sec) tRNA (tRNA([Ser]Sec)) serves as both the site of Sec biosynthesis and the adapter molecule for donation of this amino acid to protein. The consequences on selenoprotein biosynthesis of overexpressing either the wild type or a mutant tRNA([Ser]Sec) lacking the modified base, isopentenyladenosine, in its anticodon loop were examined by introducing multiple copies of the corresponding tRNA([Ser]Sec) genes into the mouse genome. Overexpression of wild-type tRNA([Ser]Sec) did not affect selenoprotein synthesis. In contrast, the levels of numerous selenoproteins decreased in mice expressing isopentenyladenosine-deficient (i(6)A(-)) tRNA([Ser]Sec) in a protein- and tissue-specific manner. Cytosolic glutathione peroxidase and mitochondrial thioredoxin reductase 3 were the most and least affected selenoproteins, while selenoprotein expression was most and least affected in the liver and testes, respectively. The defect in selenoprotein expression occurred at translation, since selenoprotein mRNA levels were largely unaffected. Analysis of the tRNA([Ser]Sec) population showed that expression of i(6)A(-) tRNA([Ser]Sec) altered the distribution of the two major isoforms, whereby the maturation of tRNA([Ser]Sec) by methylation of the nucleoside in the wobble position was repressed. The data suggest that the levels of i(6)A(-) tRNA([Ser]Sec) and wild-type tRNA([Ser]Sec) are regulated independently and that the amount of wild-type tRNA([Ser]Sec) is determined, at least in part, by a feedback mechanism governed by the level of the tRNA([Ser]Sec) population. This study marks the first example of transgenic mice engineered to contain functional tRNA transgenes and suggests that i(6)A(-) tRNA([Ser]Sec) transgenic mice will be useful in assessing the biological roles of selenoproteins.  相似文献   

20.
The group IV pyridoxal-5'-phosphate (PLP)-dependent decarboxylases belong to the beta/alpha barrel structural family, and include enzymes with substrate specificity for a range of basic amino acids. A unique homolog of this family, the Paramecium bursaria Chlorella virus arginine decarboxylase (cvADC), shares about 40% amino acid sequence identity with the eukaryotic ornithine decarboxylases (ODCs). The X-ray structure of cvADC has been solved to 1.95 and 1.8 A resolution for the free and agmatine (product)-bound enzymes. The global structural differences between cvADC and eukaryotic ODC are minimal (rmsd of 1.2-1.4 A); however, the active site has significant structural rearrangements. The key "specificity element," is identified as the 310-helix that contains and positions substrate-binding residues such as E296 cvADC (D332 in T. brucei ODC). In comparison to the ODC structures, the 310-helix in cvADC is shifted over 2 A away from the PLP cofactor, thus accommodating the larger arginine substrate. Within the context of this conserved fold, the protein is designed to be flexible in the positioning and amino acid sequence of the 310-helix, providing a mechanism to evolve different substrate preferences within the family without large structural rearrangements. Also, in the structure, the "K148-loop" (homologous to the "K169-loop" of ODC) is observed in a closed, substrate-bound conformation for the first time. Apparently the K148 loop is a mobile loop, analogous to those observed in triose phosphate isomerase and tryptophan synthetase. In conjunction with prior structural studies these data predict that this loop adopts different conformations throughout the catalytic cycle, and that loop movement may be kinetically linked to the rate-limiting step of product release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号