首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Single-crystal X-ray studies of a manganese(II) derivative of guanosine 5'-monophosphate, [Mn(5'-GMP)(H(2)O)(5)],3H(2)O, have shown that it is isostructural with its nickel analogue. The manganese atom therefore is bonded to five water molecules with the remaining octahedral co-ordination site being occupied by N-7 of the nucleotide base. No direct metal-phosphate bonding is involved, but there are structure-stabilizing intramolecular hydrogen bonds between two phosphate oxygen atoms and co-ordinated water molecules.  相似文献   

2.
A new series of complexes of cobalt(II) fluoride, nickel(II) fluoride, copper(II) fluoride and zinc(II) fluoride with imidazole were synthesized and characterized by elemental analysis, molar conductance, magnetic moments, IR and electronic absorption measurements. Based on elemental and spectral data, the complexes were found to be of [M(im)6]F2 · XH2O type, where M is Co(II), Ni(II), Cu(II) and Zn(II) and X 4-5. The magnetic moments and spectral data suggested that all the complexes possessed an octahedral geometry. The crystal structure of the nickel complex, [Ni(im)6]F2 · 5H2O, is also reported in which nickel atom is surrounded by six nitrogen atoms of imidazole. Strong intra- and inter-molecular hydrogen bonding exists between fluoride ions (uncoordinated), nitrogen of imidazole and the -OH of water molecules.  相似文献   

3.
The synthesis, structural characterization, voltammetric experiments and antibacterial activity of [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O and [Ni(sulfapyridine)(2)] were studied and compared with similar previously reported copper complexes. [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O crystallized in a monoclinic system, space group C2/c where the nickel ion was in a slightly distorted octahedral environment, coordinated with two sulfisoxazole molecules through the heterocyclic nitrogen and four water molecules. [Ni(sulfapyridine)(2)] crystallized in a orthorhombic crystal system, space group Pnab. The nickel ion was in a distorted octahedral environment, coordinated by two aryl amine N from two sulfonamides acting as monodentate ligands and four N atoms (two sulfonamidic N and two heterocyclic N) from two different sulfonamide molecules acting as bidentate ligands. Differential pulse voltammograms were recorded showing irreversible peaks at 1040 and 1070 mV, respectively, attributed to Ni(II)/Ni(III) process. [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O and [Ni(sulfapyridine)(2)] presented different antibacterial behavior against Staphylococcus aureus and Escherichia coli from the similar copper complexes and they were inactive against Mycobacterium tuberculosis.  相似文献   

4.
Differently bound water molecules of dipalmitoylphosphatidylcholine (DPPC)-H2O system were investigated with differential scanning calorimetry (DSC). According to a method previously reported by us, the ice-melting DSC curves of the DPPC-H2O samples of varying water contents were deconvoluted into multiple components, and the ice-melting enthalpies for the individual deconvoluted components were used to estimate average molar ice-melting enthalpies for freezable interlamellar and bulk waters, respectively. With these average molar ice-melting enthalpies, the numbers of differently bound water molecules of the DPPC-H2O system were calculated at varying water contents and were used to construct a water distribution diagram of this system. Furthermore, to evaluate the reliability of the present DSC deconvolution method, 2H-NMR T1 measurements of DPPC-2H2O system were carried out at 5 degrees C of the gel phase temperature, and components and fractions for differently bound water (2H2O) molecules were estimated from the analysis of nonexponential magnetization recovery curves.  相似文献   

5.
Yang L  Su Y  Liu W  Jin X  Wu J 《Carbohydrate research》2002,337(16):1485-1493
The crystal structures of CaCl(2).galactitol.4 H(2)O and 2EuCl(3).galactitol.14 H(2)O were determined to compare the coordination behavior of Ca and lanthanide ions. The crystal system of the Ca-galactitol complex, CaCl(2).C(6)H(14)O(6).4 H(2)O, is monoclinic, Cc space group. Each Ca ion is coordinated to eight oxygen atoms, four from two galactitol molecules and four from water molecules. Galactitol provides O-2, -3 to coordinate to one Ca(2+), and O-4, -5 with another Ca(2+), to form a chain structure. The crystal system of the Eu-galactitol complex, 2EuCl(3).C(6)H(14)O(6).14 H(2)O, is triclinic, P1; space group. Each Eu ion is coordinated to nine oxygen atoms, three from an alditol molecule and six from water molecules. Each galactitol provides O-1, -2, -3 to coordinate with one Eu(3+) and O-4, -5, -6 with another Eu(3+). The other water molecules are hydrogen-bonded in the structure. The similar IR spectra of Pr-, Nd-, Sm-, Eu-, Dy-, and Er-galactitol complexes show that those lanthanide ions have the same coordination mode to neutral galactitol. The Raman spectra also confirm the formation of metal ion-carbohydrate complexes.  相似文献   

6.
M A Eriksson  A Laaksonen 《Biopolymers》1992,32(8):1035-1059
Twelve dinucleotides (one complete turn) of left-handed, flexible, double-helix poly(dG-dC) Z-DNA have been simulated in aqueous solution with K+ counterions for 70 ps. Most of the d(GpC) phosphates have rotated in accordance with a ZI----ZII transition. The ZII conformation was probably partly stabilized by counterions, which coordinate one of the anionic oxygens and the guanine-N7 of the next (5'----3' direction) base. The presence of base-coordinating ions close to the helical axis rotated and pulled about half of the d(CpG) phosphates further into the groove. These ions also gave rise to rather large deviations from the crystal structure (ZI) with their tendency of pulling the bases closer toward the helical axis. A flipping of the orientation about the glycosyl bond from the +sc to the -sc region was observed for one guanosine, also leading to deviations from the crystal structure. Many bridges containing one or two water molecules were found, with a dominance for the latter. They essentially formed a network of intra- and interstrand bridges between anionic and esterified phosphate oxygens. A "spine" of water molecules could be distinguished as a dark zig-zag pattern in the water density map. The lifetime of a bridge containing one water was about twice as long as that of a two-water bridge and it lasted 5-15 times longer than a hydrogen bond in water. The lifetimes were also calculated for a selection of bridge types, in order of decreasing stability: O1P/O2P ... W ... O'4 much greater than O1P/O2P ... W ... guanine-N2 greater than O1P/O2P ... W ... O1P/O2P. The reorientational motion of water molecules in the first hydration shell around selected groups was slowed down considerably compared to bulk water and the decreasing order of correlation times was guanine-N2 greater than O'4 greater than O'3/O'5 greater than O1P/O2P.  相似文献   

7.
Fan Z  Diao CH  Guo MJ  Du RJ  Song YF  Jing ZL  Yu M 《Carbohydrate research》2007,342(16):2500-2503
The weak inclusion complex of cyclomaltoheptaose (beta-cyclodextrin, betaCD) with p-nitrobenzoic acid was investigated in the solid state. Crystallography shows that two betaCD molecules co-crystallize with two p-nitrobenzoic acids and 28.5 water molecules [2(C(42)H(70)O(35))x2(C(7)H(5)NO(4))x28.5H(2)O] in the triclinic system.  相似文献   

8.
The inclusion complex of beta-cyclodextrin (beta-CD) with benzoic acid (BA) has been characterized crystallographically. Two beta-CDs cocrystallize with two BAs, 0.7 ethanol and 20.65 water molecules [2(C(6)H(10)O(5))(7).2(C(7)H(6)O(2)).0.7(C(2)H(6)O).20.65H(2)O] in the triclinic space group P1 with unit cell constants: a=15.210(1), b=15.678(1), c=15.687(1) A, alpha=89.13(1), beta=74.64(1), gamma=76.40(1) degrees. The anisotropic refinement of 1840 atomic parameters against 16,201 X-ray diffraction data converged at R=0.078. In the crystal lattice, beta-CD forms dimers stabilized by direct O-2(m)_1/O-3(m)_1...O-2(n)_2/O-3(n)_2 hydrogen bonds (intradimer) and by indirect O-6(m)_1...,O-6(n)_2 hydrogen bonds with one or two bridging water molecules joined in between (interdimer). These dimers are stacked like coins in a roll constructing endless channels where the guest molecules are included. The BA molecules protrude with their COOH groups at the beta-CD O-6-sides and are maintained in positions by hydrogen bonding to the surrounding O-6-H groups and water molecules. Water molecules (20.65) are distributed over 30 positions in the interstices between beta-CD molecules, except the water sites W-1, W-2 that are located in the channel of the beta-CD dimer. Water site W-2 is hydrogen bonded to the disordered ethanol molecule (occupancy 0.7).  相似文献   

9.
Two metal complexes [Ni(en)5'GMPH)2(H2O)2] (en).6.5H2O and [Ni(en)(5'IMPH)2(H2O)2].13H2O have been synthesized in the form of suitable crystals for x-ray crystallography (en = ethylenediamine, 5'GMP = guanosine 5'-monophosphate, 5'IMP = inosine 5'-monophosphate). The 5'GMP complex crystallizes in a monoclinic space group P21 (Z = 4) with a = 12.317(2), b = 28.417(4), c = 12.290(2)A, beta (deg) = 89.59(2). The 5'IMP complex is tetragonal, space group P4122 (Z = 4), with a = 12.119(3), b = 12.119(3), c = 28.560(4)A, beta (deg) = 90.0. The crystal structures of both complexes were refined from diffractometer data to conventional R values of 0.073 for the 5'GMP compound (5,284 observed reflections, 1,322 variables) and 0.030 for the 5'-IMP compound (1,529 observed reflections, 296 variables). In both structures, the Ni(II) is surrounded by two water molecules, one chelate ethylenediamine, and two nucleotide molecules. The synthesis was carried out from Ni(en)2Cl2.0.5H2O and the nucleotide in water medium. The dimer structure of the initial complex is broken, and one ethylenediamine is substituted by two molecules of the nucleotide with the N(7) of the purine ring in cis-position. Differences between both structures are largely due to retention in the structure or loss of the en molecule substituted and to the intermolecular hydrogen bonds of the en molecule coordinated. A third complex of composition [Ni(en)(5'IMPH)2(H2O)2] (en).6H2O similar to the 5'GMP complex has been obtained in the form of blue crystals, but unfortunately its crystal structure failed to be refined. This complex is isostructural with the monoclinic one.  相似文献   

10.
A study of the salts of 4-fluoro-3-sulfobenzylphosphonic acid has resulted in the synthesis of two new compounds with unusual layered structures. The crystal structures of these salts and the parent acid have been determined by single crystal X-ray methods. Crystal data: 4-F-3-SO3H-C6H3CH2PO3H2·H2O: triclinic, space group

for 1519 observations (l>3σ(l)) and 182 variables; [Ni(NH3)2(H2O)4]3(4-F-3-SO3-C6H3-CH2PO3)2·4H2O: triclinic, space group

for 2689 observations (l>3σ(I)) and 511 variables: Na3(4-F-3-SO3-C6H3CH2PO3)- 8.5H2O: monoclinic, C2/c, Z = 8, A = 25.636(4), B = 6.218(4), C = 24.136(2) Å, β = 98.33(1)°, V = 3807(3) Å3, R(F) = 0.047 for 2262 observations (I>2;3σ(I)) and 254 variables. The parent acid monohydrate crystallizes in layers with the acidic groups directed to the faces of the layer. The water molecules are in between the layers hydrogen-bonded to the sulfonate oxygen atoms. The nickel salt contains three independent cations, each of which is hexacoordinated to a mixture of water and ammonia molecules. Thus, there is no direct coordination of the nickel by either the sulfonate or phosphonate oxygen atoms. The structure has alternating layers, the first formed by the anions and one of the nickel complexes, and the second by the other two complexes and the free water molecules. The sodium salt also has the anions arranged in layers but with an interpenetrating three-dimensional network of ionic and hydrogen bonds involving the cations and water molecules. The sodium ions are coordinated to a mixture of sulfonate oxygen atoms and bridging water molecules in irregular six-fold environments. These structures are discussed in terms of the coordination behavior of the difunctional anions in the context of known monofunctional phosphonate and sulfonate compounds.  相似文献   

11.
The formation of water clusters, polyhydrates of nucleotide bases and their associates during simultaneous condensation of water and base molecules in vacuo onto a surface of a needle emitter cooled to 170 K was studied by field ionization mass spectrometry. It was found that different emitter temperatures are characterized by a specific distribution of intensities of cluster currents, depending on the number of water molecules in clusters. These distributions correlate with structural peculiarities and the relative energetics of formation of water clusters, polyhydrates of nucleotide bases and their associates at low temperature. The features observed in mass spectra for clusters m9Ade (H2O)5, m1Ura (H2O)4 and m9Ade m1Ura (H2O)2 are treated as a result of formation of energetically favorable structures stabilized by H-bonded bridges of water molecules. The relative association constants and formation enthalpies of the noncomplementary pairs Ade Cyt, Gua Ura and the associates which model the aminoacid-base complexes m1Ura Gln and m1.3(2)Thy Gln were determined from the temperature dependencies of the intensities of mass spectra peaks in the range 290-320 K.  相似文献   

12.
Slepokura K  Lis T 《Carbohydrate research》2004,339(11):1995-2007
The crystal and molecular structures of three crystalline forms of the dihydroxyacetone dimer, C6H12O6, DHA-dimer: alpha (1a), beta (1b), and gamma (1c), the hydrated calcium chloride complex of dihydroxyacetone monomer, CaCl2(C3H6O3)(2) x H2O, CaCl2(DHA)2 x H2O (2a), the tetrahydrated calcium chloride complex of dihydroxyacetone monomer, CaCl2(C3H6O3) x 4H2O, CaCl2(DHA) x 4H2O (2b), the dihydroxyacetone monomer, C3H6O3, DHA (2c), and dihydroxyacetone dimethyl acetal, C5H12O4, (MeO)2DHA (3) are described. Compounds 1a and 2b crystallize in the triclinic system, and 1b,c, 2a,c, and 3 are monoclinic. Molecules of all forms of dihydroxyacetone dimer 1a,b, and 1c are the trans isomers, with the 1,4-dioxane ring in the chair conformation and the hydroxyl and hydroxymethyl groups in axial and equatorial dispositions, respectively. The Ca2+ ions in 2a and 2b are bridged by the carbonyl O atoms from two symmetry-related DHA molecules to form centrosymmetric dimers with Ca...Ca distance of 4.307(2)A in 2a and 4.330(2) and 4.305(2)A in two crystallographically independent dimers in 2b. DHA molecules coordinate to the Ca2+ ions by hydroxyl and carbonyl oxygen atoms. The eight-coordinate polyhedra of Ca2+ are completed by water molecule and Cl- ion in 2a and by four water molecules in 2b. The dihydroxyacetone molecules in 2a,b, and 2c are in an extended conformation, with both hydroxyl groups being synperiplanar (sp) to the carbonyl O atom. All hydroxyl groups in 2c (along with water molecules in 2a and 2b) are involved as donors in medium strong and weak intermolecular O-H...O hydrogen bonding. Some of them, as well as carbonyl O atoms or Cl- ions in 2a and 2b, act as acceptors in C-H...O (and C-H...Cl) hydrogen interactions.  相似文献   

13.
Even in high-quality X-ray crystal structures of oligonucleotides determined at a resolution of 1 Å or higher, the orientations of first-shell water molecules remain unclear. We used cryo neutron crystallography to gain insight into the H-bonding patterns of water molecules around the left-handed Z-DNA duplex [d(CGCGCG)]2. The neutron density visualized at 1.5 Å resolution for the first time allows us to pinpoint the orientations of most of the water molecules directly contacting the DNA and of many second-shell waters. In particular, H-bond acceptor and donor patterns for water participating in prominent hydration motifs inside the minor groove, on the convex surface or bridging nucleobase and phosphate oxygen atoms are finally revealed. Several water molecules display entirely unexpected orientations. For example, a water molecule located at H-bonding distance from O6 keto oxygen atoms of two adjacent guanines directs both its deuterium atoms away from the keto groups. Exocyclic amino groups of guanine (N2) and cytosine (N4) unexpectedly stabilize waters H-bonded to O2 keto oxygens from adjacent cytosines and O6 keto oxygens from adjacent guanines, respectively. Our structure offers the most detailed view to date of DNA solvation in the solid-state undistorted by metal ions or polyamines.  相似文献   

14.
The single crystal structure of CaCl(2).C(5)H(10)O(5).3H(2)O was determined with M(r)=315.16, a=7.537(3), b=11.426(5), c=15.309(6) A, beta=90 degrees, V=1318.3(9) A(3), P2(1)2(1)2(1), Z=2, mu=0.71073 A and R=0.0398 for 2322 observed reflections. The ribose moiety of the complex exists as a furanose with alpha-D configuration. All five oxygen atoms of the ribose molecule are involved in calcium binding. Each calcium ion is shared by two such sugar molecules, coordinating through O(1), O(2), O(3) of one molecule and O(4) and O(5) of the other. The C-C, O-H, C-O and C-O-H vibrations are shifted and the relative intensities changed in the complex IR spectrum, corresponding to the changes in bond distances and angles of the sugar structure. All the hydroxyl groups, water molecules and chloride ions are involved in forming an extensive hydrogen-bond network of O-H...Cl...O-H structure, and the chloride ions play an important role in the crystal packing.  相似文献   

15.
Three new binary Cu(II) complexes of norfloxacin have been synthesized and characterized. We also report the synthesis, characterization and X-ray crystallographic structures of a new binary compound, [Cu(HNor)(2)]Cl(2).2H(2)O (2) and two new ternary complexes norfloxacin-copper(II)-phen, [Cu(Nor)(phen)(H(2)O)](NO(3)).3H(2)O (4), and [Cu(HNor)(phen)(NO(3))](NO(3)).3H(2)O (5). The structure of 2 consists of two crystallographically independent cationic monomeric units of [Cu(HNor)(2)](2+), chloride anions, and uncoordinated water molecules. The Cu(II) ion is placed at a center of symmetry and is coordinated to two norfloxacin ligands which are related through the inversion center. The structures of 4 and 5 consist of cationic units ([Cu(Nor)(phen)(H(2)O)](+) for 4 and [Cu(HNor)(phen)(NO(3))](+) for 5), nitrate counteranions, and lattice water molecules that provide crystalline stability through a network of hydrogen-bond interactions. The complexes exhibit a five coordinated motif in a square pyramidal environment around the metal center. The ability of compounds 4 and 5 to cleave DNA has also been studied. Mechanistic studies with different inhibiting reagents reveal that hydroxyl radicals, singlet oxygen, and superoxide radicals are all involved in the DNA scission process mediated by these compounds.  相似文献   

16.
Three new complexes of transition metals as copper, nickel and cobalt with 5-formyluracil thiosemicarbazone (H3ut) have been synthesised and characterised by single-crystal X-ray diffraction. In all compounds the ligand behaves as SNO terdentate. In the copper complex the coordination geometry is square pyramidal with the ligand lying on the basal plane and two water molecules that complete the metal environment, the nickel compound is surrounded by six donor atoms (three of the ligand, two water oxygen atoms and a chlorine atom) in an octahedral fashion, and cobalt also shows an octahedral geometry but determined only by two terdentate ligand molecules. These three compounds have been tested on human leukemic cell lines K562 and CEM. The nickel and cobalt complexes have demonstrated low activity in cell growth, while the copper complex that is more active has been tested also on a third leukemic human cell line (U937), but it was not able to induce apoptosis on all cell lines.  相似文献   

17.
The structures of [Ni(5′-dGMP)(H2O)5] and [Co(5′-dGMP)(H2O)5] have been solved by single-crystal x-ray diffraction techniques. Their common geometry consists of a metal ion octahedrally coordinated to the N7 atom of guanine and five water ligands. The phosphate group of the nucleotide is hydrogenbonded to two of the coordinated water molecules.  相似文献   

18.
Yang L  Zhao Y  Xu Y  Jin X  Weng S  Tian W  Wu J  Xu G 《Carbohydrate research》2001,334(2):91-95
The crystal structure of praseodymium chloride.alpha-D-ribopyranose pentahydrate, PrCl3-C5H10O5-5 H2O, M(r)=487.47, a=9.1989(8), b=8.8214(7), c=9.8233(9) A, beta=94.060(3) degrees, V=795.2(1) A(3), Z=2, mu=0.71073 A and R=0.0418 for 1923 observed reflections and 172 parameters has been determined. The sugar provides three hydroxyl groups, ax-eq-ax for coordination. The Pr(3+) ion is nine-coordinated with five Pr-O bonds from water molecules, three from hydroxyl groups and one from chloride. The OH, CO stretching vibrations and COH bending vibrations are shifted in the complex IR spectrum and the hydroxyl groups, water molecules, chloride ions form an extensive hydrogen-bond network.  相似文献   

19.
Crystals of [Phe4 Val6] antamanide (cyclic [ValProProPhePhe]2) grown from dioxane/H2O, with space group P21212 and cell parameters a = 15.099(4), b = 22.008(5) and c = 11.024(3) A, are almost identical to crystals grown from H2O/acetone, the structure of which was determined a number of years ago. Per peptide molecule there are the equivalent of 12 water molecules occupying 16 sites in both crystals; however, in the new investigation a number of water molecules present at one-half occupancy have been found in different positions than in the earlier analysis. The interpretation of the hydrogen bonding between peptide/water and between water/water is much more satisfactory. Pentagonal water assemblies are present in the solvent channel. There is a distinct indication of the occurrence of a bifurcated bond between two water molecules, as well as the presence of three-center hydrogen bonds joining three water molecules. This may be the first experimental example of a bifurcated bond between two water molecules.  相似文献   

20.
Structurally conserved water molecules in ribonuclease T1   总被引:4,自引:0,他引:4  
In the high resolution (1.7-1.9 A) crystal structures of ribonuclease T1 (RNase T1) in complex with guanosine, guanosine 2'-phosphate, guanylyl 2',5'-guanosine, and vanadate, there are 30 water sites in nearly identical (+/- 1 A) positions that are considered conserved. One water is tightly bound to Asp76(O delta), Thr93(O gamma), Cys6(O), and Asn9(N); another bridges two loops by hydrogen-bonding to Tyr68(O eta) and to Ser35(N), Asn36(N); a loop structure is stabilized by two waters coordinated to Gly31(O) and His27(N delta), and by water bound to cis-Pro39(O). Most notable is a hydrogen-bonded chain of 10 water molecules. Waters 1-5 of this chain are inaccessible to solvent, are anchored at Trp59(N), and stitch together the loop formed by segments 60-68; waters 5-8 coordinate to Ca2+, and waters 9 and 10 hydrogen-bond to N-terminal side chains of the alpha-helix. The water chain and two conserved water molecules are bound to amino acids adjacent to the active site residues His40, Glu58, Arg77, and His92; they are probably involved in maintaining their spatial orientation required for catalysis. Water sites must be considered in genetic engineering; the mutation Trp59Tyr, which probably influences the 10-water chain, doubles the catalytic activity of RNase T1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号