首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Cancer classification is the critical basis for patient-tailored therapy, while pathway analysis is a promising method to discover the underlying molecular mechanisms related to cancer development by using microarray data. However, linking the molecular classification and pathway analysis with gene network approach has not been discussed yet. In this study, we developed a novel framework based on cancer class-specific gene networks for classification and pathway analysis. This framework involves a novel gene network construction, named ordering network, which exhibits the power-law node-degree distribution as seen in correlation networks. The results obtained from five public cancer datasets showed that the gene networks with ordering relationship are better than those with correlation relationship in terms of accuracy and stability of the classification performance. Furthermore, we integrated the ordering networks, classification information and pathway database to develop the topology-based pathway analysis for identifying cancer class-specific pathways, which might be essential in the biological significance of cancer. Our results suggest that the topology-based classification technology can precisely distinguish cancer subclasses and the topology-based pathway analysis can characterize the correspondent biochemical pathways even if there are subtle, but consistent, changes in gene expression, which may provide new insights into the underlying molecular mechanisms of tumorigenesis.  相似文献   

2.
3.
4.
We propose a statistical method for estimating a gene network based on Bayesian networks from microarray gene expression data together with biological knowledge including protein-protein interactions, protein-DNA interactions, binding site information, existing literature and so on. Microarray data do not contain enough information for constructing gene networks accurately in many cases. Our method adds biological knowledge to the estimation method of gene networks under a Bayesian statistical framework, and also controls the trade-off between microarray information and biological knowledge automatically. We conduct Monte Carlo simulations to show the effectiveness of the proposed method. We analyze Saccharomyces cerevisiae gene expression data as an application.  相似文献   

5.
Large-scale microarray gene expression data provide the possibility of constructing genetic networks or biological pathways. Gaussian graphical models have been suggested to provide an effective method for constructing such genetic networks. However, most of the available methods for constructing Gaussian graphs do not account for the sparsity of the networks and are computationally more demanding or infeasible, especially in the settings of high dimension and low sample size. We introduce a threshold gradient descent (TGD) regularization procedure for estimating the sparse precision matrix in the setting of Gaussian graphical models and demonstrate its application to identifying genetic networks. Such a procedure is computationally feasible and can easily incorporate prior biological knowledge about the network structure. Simulation results indicate that the proposed method yields a better estimate of the precision matrix than the procedures that fail to account for the sparsity of the graphs. We also present the results on inference of a gene network for isoprenoid biosynthesis in Arabidopsis thaliana. These results demonstrate that the proposed procedure can indeed identify biologically meaningful genetic networks based on microarray gene expression data.  相似文献   

6.
MOTIVATION: Network reconstruction of biological entities is very important for understanding biological processes and the organizational principles of biological systems. This work focuses on integrating both the literatures and microarray gene-expression data, and a combined literature mining and microarray analysis (LMMA) approach is developed to construct gene networks of a specific biological system. RESULTS: In the LMMA approach, a global network is first constructed using the literature-based co-occurrence method. It is then refined using microarray data through a multivariate selection procedure. An application of LMMA to the angiogenesis is presented. Our result shows that the LMMA-based network is more reliable than the co-occurrence-based network in dealing with multiple levels of KEGG gene, KEGG Orthology and pathway. AVAILABILITY: The LMMA program is available upon request.  相似文献   

7.

Background

Ulcerative colitis (UC) was the most frequently diagnosed inflammatory bowel disease (IBD) and closely linked to colorectal carcinogenesis. By far, the underlying mechanisms associated with the disease are still unclear. With the increasing accumulation of microarray gene expression profiles, it is profitable to gain a systematic perspective based on gene regulatory networks to better elucidate the roles of genes associated with disorders. However, a major challenge for microarray data analysis is the integration of multiple-studies generated by different groups.

Methodology/Principal Findings

In this study, firstly, we modeled a signaling regulatory network associated with colorectal cancer (CRC) initiation via integration of cross-study microarray expression data sets using Empirical Bayes (EB) algorithm. Secondly, a manually curated human cancer signaling map was established via comprehensive retrieval of the publicly available repositories. Finally, the co-differently-expressed genes were manually curated to portray the layered signaling regulatory networks.

Results

Overall, the remodeled signaling regulatory networks were separated into four major layers including extracellular, membrane, cytoplasm and nucleus, which led to the identification of five core biological processes and four signaling pathways associated with colorectal carcinogenesis. As a result, our biological interpretation highlighted the importance of EGF/EGFR signaling pathway, EPO signaling pathway, T cell signal transduction and members of the BCR signaling pathway, which were responsible for the malignant transition of CRC from the benign UC to the aggressive one.

Conclusions

The present study illustrated a standardized normalization approach for cross-study microarray expression data sets. Our model for signaling networks construction was based on the experimentally-supported interaction and microarray co-expression modeling. Pathway-based signaling regulatory networks analysis sketched a directive insight into colorectal carcinogenesis, which was of significant importance to monitor disease progression and improve therapeutic interventions.  相似文献   

8.
9.
We propose a new method for identifying and validating drug targets by using gene networks, which are estimated from cDNA microarray gene expression profile data. We created novel gene disruption and drug response microarray gene expression profile data libraries for the purpose of drug target elucidation. We use two types of microarray gene expression profile data for estimating gene networks and then identifying drug targets. The estimated gene networks play an essential role in understanding drug response data and this information is unattainable from clustering methods, which are the standard for gene expression analysis. In the construction of gene networks, we use the Bayesian network model. We use an actual example from analysis of the Saccharomyces cerevisiae gene expression profile data to express a concrete strategy for the application of gene network information to drug discovery.  相似文献   

10.
11.
MOTIVATION: Biological assays are often carried out on tissues that contain many cell lineages and active pathways. Microarray data produced using such material therefore reflect superimpositions of biological processes. Analysing such data for shared gene function by means of well-matched assays may help to provide a better focus on specific cell types and processes. The identification of genes that behave similarly in different biological systems also has the potential to reveal new insights into preserved biological mechanisms. RESULTS: In this article, we propose a hierarchical Bayesian model allowing integrated analysis of several microarray data sets for shared gene function. Each gene is associated with an indicator variable that selects whether binary class labels are predicted from expression values or by a classifier which is common to all genes. Each indicator selects the component models for all involved data sets simultaneously. A quantitative measure of shared gene function is obtained by inferring a probability measure over these indicators. Through experiments on synthetic data, we illustrate potential advantages of this Bayesian approach over a standard method. A shared analysis of matched microarray experiments covering (a) a cycle of mouse mammary gland development and (b) the process of in vitro endothelial cell apoptosis is proposed as a biological gold standard. Several useful sanity checks are introduced during data analysis, and we confirm the prior biological belief that shared apoptosis events occur in both systems. We conclude that a Bayesian analysis for shared gene function has the potential to reveal new biological insights, unobtainable by other means. AVAILABILITY: An online supplement and MatLab code are available at http://www.sykacek.net/research.html#mcabf  相似文献   

12.
Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent “noise” within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.  相似文献   

13.
MOTIVATION: The application of microarray chip technology has led to an explosion of data concerning the expression levels of the genes in an organism under a plethora of conditions. One of the major challenges of systems biology today is to devise generally applicable methods of interpreting this data in a way that will shed light on the complex relationships between multiple genes and their products. The importance of such information is clear, not only as an aid to areas of research like drug design, but also as a contribution to our understanding of the mechanisms behind an organism's ability to react to its environment. RESULTS: We detail one computational approach for using gene expression data to identify response networks in an organism. The method is based on the construction of biological networks given different sets of interaction information and the reduction of the said networks to important response sub-networks via the integration of the gene expression data. As an application, the expression data of known stress responders and DNA repair genes in Mycobacterium tuberculosis is used to construct a generic stress response sub-network. This is compared to similar networks constructed from data obtained from subjecting M.tuberculosis to various drugs; we are thus able to distinguish between generic stress response and specific drug response. We anticipate that this approach will be able to accelerate target identification and drug development for tuberculosis in the future. CONTACT: chris@lanl.gov SUPPLEMENTARY INFORMATION: Supplementary Figures 1 through 6 on drug response networks and differential network analyses on cerulenin, chlorpromazine, ethionamide, ofloxacin, thiolactomycin and triclosan. Supplementary Tables 1 to 3 on predicted protein interactions. http://www.santafe.edu/~chris/DifferentialNW.  相似文献   

14.
BackgroundThere is a growing body of evidence associating microRNAs (miRNAs) with human diseases. MiRNAs are new key players in the disease paradigm demonstrating roles in several human diseases. The functional association between miRNAs and diseases remains largely unclear and far from complete. With the advent of high-throughput functional genomics techniques that infer genes and biological pathways dysregulted in diseases, it is now possible to infer functional association between diseases and biological molecules by integrating disparate biological information.ResultsHere, we first used Lasso regression model to identify miRNAs associated with disease signature as a proof of concept. Then we proposed an integrated approach that uses disease-gene associations from microarray experiments and text mining, and miRNA-gene association from computational predictions and protein networks to build functional associations network between miRNAs and diseases. The findings of the proposed model were validated against gold standard datasets using ROC analysis and results were promising (AUC=0.81). Our protein network-based approach discovered 19 new functional associations between prostate cancer and miRNAs. The new 19 associations were validated using miRNA expression data and clinical profiles and showed to act as diagnostic and prognostic prostate biomarkers. The proposed integrated approach allowed us to reconstruct functional associations between miRNAs and human diseases and uncovered functional roles of newly discovered miRNAs.ConclusionsLasso regression was used to find associations between diseases and miRNAs using their gene signature. Defining miRNA gene signature by integrating the downstream effect of miRNAs demonstrated better performance than the miRNA signature alone. Integrating biological networks and multiple data to define miRNA and disease gene signature demonstrated high performance to uncover new functional associations between miRNAs and diseases.  相似文献   

15.
16.
A robust bioinformatics capability is widely acknowledged as central to realizing the promises of toxicogenomics. Successful application of toxicogenomic approaches, such as DNA microarray, inextricably relies on appropriate data management, the ability to extract knowledge from massive amounts of data and the availability of functional information for data interpretation. At the FDA's National Center for Toxicological Research (NCTR), we are developing a public microarray data management and analysis software, called ArrayTrack. ArrayTrack is Minimum Information About a Microarray Experiment (MIAME) supportive for storing both microarray data and experiment parameters associated with a toxicogenomics study. A quality control mechanism is implemented to assure the fidelity of entered expression data. ArrayTrack also provides a rich collection of functional information about genes, proteins and pathways drawn from various public biological databases for facilitating data interpretation. In addition, several data analysis and visualization tools are available with ArrayTrack, and more tools will be available in the next released version. Importantly, gene expression data, functional information and analysis methods are fully integrated so that the data analysis and interpretation process is simplified and enhanced. ArrayTrack is publicly available online and the prospective user can also request a local installation version by contacting the authors.  相似文献   

17.

Background  

Microarrays have become extremely useful for analysing genetic phenomena, but establishing a relation between microarray analysis results (typically a list of genes) and their biological significance is often difficult. Currently, the standard approach is to map a posteriori the results onto gene networks in order to elucidate the functions perturbed at the level of pathways. However, integrating a priori knowledge of the gene networks could help in the statistical analysis of gene expression data and in their biological interpretation.  相似文献   

18.
BioLayoutJava     
Visualisation of biological networks is becoming a common task for the analysis of high-throughput data. These networks correspond to a wide variety of biological relationships, such as sequence similarity, metabolic pathways, gene regulatory cascades and protein interactions. We present a general approach for the representation and analysis of networks of variable type, size and complexity. The application is based on the original BioLayout program (C-language implementation of the Fruchterman-Rheingold layout algorithm), entirely re-written in Java to guarantee portability across platforms. BioLayout(Java) provides broader functionality, various analysis techniques, extensions for better visualisation and a new user interface. Examples of analysis of biological networks using BioLayout(Java) are presented.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号