首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Structural requirements for substrate binding to histidyl-tRNA synthetase from Salmonella typhimurium have been investigated using ATP analogues. Ki values and the relative binding affinity of the enzyme for these analogues have been determined in the tRNA aminoacylation reaction. The enzyme is highly specific for ATP: no binding was found for GTP, CTP, TTP and UTP. dATP is a very poor substrate for acylation of tRNA, with a Km 40-fold higher than that of ATP. Binding of adenosine 5'-triphosphate requires interactions of the amino group of adenosine and the sugar moiety; the 2' and the 5' positions of the ribose appear to be essential for recognition; the phosphate groups enhance the binding. AMP is a noncompetitive inhibitor with ATP. The interaction of histidyl-tRNA synthetase, a dimeric enzyme, with histidine and ATP was examined by fluorescence measurements at equilibrium and by equilibrium dialysis. Binding with L-histidine is significantly tighter at pH 6 than at pH 7, while the ATP binding is independent of pH. The stoichiometry was measured at pH 6 than at pH 7, while the ATP binding is independent of pH. The stoichiometry was measured at pH 7.5 by equilibrium dialysis and is 1 mol ATP/mol enzyme and, variably, close to 2 or 1 mol histidine/mol enzyme.  相似文献   

3.
Characterization of the donor and acceptor specificities of mRNA guanylyltransferase and mRNA (guanine-7-)-methyltransferase isolated from vaccinia virus cores has enabled us to discriminate between alternative reaction sequences leading to the formation of the 5'-terminal m7G(5')pppN-structure. The mRNA guanylyltransferase catalyzes the transfer of a residue of GMP from GTP to acceptors which possess a 5'-terminal diphosphate. A diphosphate-terminated polyribonucleotide is preferred to a mononucleoside diphosphate as an acceptor suggesting that the guanylyltransferase reaction occurs after initiation of RNA synthesis. Although all of the homopolyribonucleotides tested (pp(A)n, pp(G)n, pp(I)n, pp(U)n, and pp(C)n) are acceptors for the mRNA guanylyltransferase indicating lack of strict sequence specificity, those containing purines are preferred. Only GTP and dGTP are donors in the reaction; 7-methylguanosine (m7G) triphosphate specifically is not a donor indicating that guanylylation must precede guanine-7-methylation. The preferred acceptor of the mRNA (guanine-7-)-methyltransferase is the product of the guanylyltransferase reaction, a polyribonucleotide with the 5'-terminal sequence G(5')pppN-. The enzyme can also catalyze, but less efficiently methylation of the following: dinucleoside triphosphates with the structure G(5')pppN, GTP, dGTP, ITP, GDP, GMP, and guanosine. The enzyme will not catalyze the transfer of methyl groups to ATP, XTP, CTP, UTP, or to guanosine-containing compounds with phosphate groups in either positions 2' or 3' or in 3'-5' phosphodiester linkages. The latter specificity provides an explanation for the absence of internal 7-methylguanosine in mRNA. In the presence of PPi, the mRNA guanylyltransferase catalyzes the pyrophosphorolysis of the dinucleoside triphosphate G(5')pppA, but not of m7G(5')pppA. Since PPi is generated in the process of RNA chain elongation, stabilization of the 5'-terminal sequences of mRNA is afforded by guanine-7-methylation.  相似文献   

4.
Mechanism of action of a yeast RNA ligase in tRNA splicing   总被引:44,自引:0,他引:44  
The yeast endonuclease and ligase activities that carry out the splicing of tRNA precursors in vitro have been physically separated. The properties of a partially purified ligase fraction were examined. The ligase requires a divalent cation and a nucleoside triphosphate as cofactor. The product of ligation is a 2′-phosphomonoester, 3′,5′-phosphodiester linkage. The phosphate in the newly formed phosphodiester bond comes from the γ position of ATP, while the 2′ phosphate is derived from the RNA substrate. An adenylylated enzyme intermediate was identified by incorporation of label from α-32P-ATP. Adenylylation was reversed by pyrophosphate, releasing ATP, whereas ligation was accompanied by release of AMP. Polynucleotide kinase and cyclic phosphodiesterase activities copurify with the adenylylated protein and may be required for the tRNA splicing reaction.  相似文献   

5.
A purified enzyme system isolated from vaccinia virus cores has been shown to modify the 5' termini of viral mRNA and synthetic poly(A) and poly(G) to form the structures m7G(5')pppA- and m7G(5')pppG-. The enzyme system has both guanylyltransferase and methyltransferase activities. The GTP:mRNA guanylyltransferase activity incorporates GMP into the 5' terminus via a 5'-5' triphosphate bond. The properties of this reaction are: (a) of the four nucleoside triphosphates only GTP is a donor, (b) mRNA with two phosphates at the 5' terminus is an acceptor while RNA with a single 5'-terminal phosphate is not, (c) Mg2+ is required, (d) the pH optimum is 7.8, (e) PP1 is a strong inhibitor, and (f) the reverse reaction, namely the formation of GTP from PP1 and RNA containing the 5'-terminal structure G(5')pppN-, readily occurs. The S-adenosylmethionine:mRNA(guanine-7-)methyltransferase activity catalyzes the methylation of the 5'-terminal guanosine. This reaction exhibits the following characteristics: (a) mRNA with the 5'-terminal sequences G(5')pppA- and G(5')pppG- are acceptors, (b) only position 7 of the terminal guanosine is methylated; internal or conventional 5'-terminal guanosine residues are not methylated, (c) the reaction is not dependent upon GTP or divalent cations, (d) optimal activity is observed in a broad pH range around neutrality, (e) the reaction is inhibited by S-adenosylhomocysteine. Both the guanylyltransferase and methyltransferase reactions exhibit bisubstrate kinetics and proceed via a sequential mechanism. The reactions may be summarized: (see article).  相似文献   

6.
Eukaryotes have been proposed to depend on AMP deaminase as a primary step in the regulation of intracellular adenine nucleotide pools. This report describes 1) the role of AMP deaminase in adenylate metabolism in yeast cell extracts, 2) a method for large scale purification of the enzyme, 3) the kinetic properties of native and proteolyzed enzymes, 4) the kinetic reaction mechanism, and 5) regulatory interactions with ATP, GTP, MgATP, ADP, and PO4. Allosteric regulation of yeast AMP deaminase is of physiological significance, since expression of the gene is constitutive (Meyer, S. L., Kvalnes-Krick, K. L., and Schramm, V. L. (1989) Biochemistry 28, 8734-8743). The metabolism of ATP in cell-free extracts of yeast demonstrates that AMP deaminase is the sole pathway of AMP catabolism in these extracts. Purification of the enzyme from bakers' yeast yields a proteolytically cleaved enzyme, Mr 86,000, which is missing 192 amino acids from the N-terminal region. Extracts of Escherichia coli containing a plasmid with the gene for yeast AMP deaminase contained only the unproteolyzed enzyme, Mr 100,000. The unproteolyzed enzyme is highly unstable during purification. Substrate saturation plots for proteolyzed AMP deaminase are sigmoidal. In the presence of ATP, the allosteric activator, the enzyme exhibits normal saturation kinetics. ATP activates the proteolyzed AMP deaminase by increasing the affinity for AMP from 1.3 to 0.2 mM without affecting VM. Activation by ATP is more efficient than MgATP, with half-maximum activation constants of 6 and 80 microM, respectively. The kinetic properties of the proteolyzed and unproteolyzed AMP deaminase are similar. Thus, the N-terminal region is not required for catalysis or allosteric activation. AMP deaminase is competitively inhibited by GTP and PO4 with respect to AMP. The inhibition constants for these inhibitors decrease in the presence of ATP. ATP, therefore, tightens the binding of GTP, PO4, and AMP. The products of the reaction, NH3 and IMP, are competitive inhibitors against substrate, consistent with a rapid equilibrium random kinetic mechanism. Kinetic dissociation constants are reported for the binary and ternary substrate and product complexes and the allosteric modulators.  相似文献   

7.
Bacteriophage T4 RNA ligase catalyzes the ATP-dependent ligation of a 5'-phosphoryl-terminated nucleic acid donor to a 3'-hydroxyl-terminated nucleic acid acceptor. We have identified adenylylated DNA and RNA reaction intermediates in which the AMP moiety is attached by a pyrophosphate bond to the 5'-phosphoryl group of the donor. A large amount of DNA-adenylate accumulates during the reaction and the dependence of joining and adenylylation on chain length are similar. The adenylylated donor is joined by ligase to an acceptor in the absence of ATP, and AMP is released stoichiometrically in this reaction. The acceptor is not only a substrate in the reaction but also a cofactor for adenylylation of the donor; in the absence of a 3'-hydroxyl group the activated intermediate does not form. The activated DNA need not join to the acceptor that initially stimulated activation but can also join to another acceptor. This process of acceptor exchanges has proven useful for promoting the cyclization of small DNA substrates and the synthesis of DNA co-polymers.  相似文献   

8.
Schneider K  Dimroth P  Bott M 《Biochemistry》2000,39(31):9438-9450
Citrate lyase (EC 4.1.3.6) catalyzes the cleavage of citrate to acetate and oxaloacetate and is composed of three subunits (alpha, beta, and gamma). The gamma-subunit serves as an acyl carrier protein (ACP) and contains the prosthetic group 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA, which is attached via a phosphodiester linkage to serine-14 in the enzyme from Klebsiella pneumoniae. In this work, we demonstrate by genetic and biochemical studies with citrate lyase of Escherichia coli and K. pneumoniae that the conversion of apo-ACP into holo-ACP is dependent on the two proteins, CitX (20 kDa) and CitG (33 kDa). In the absence of CitX, only apo-ACP was synthesized in vivo, whereas in the absence of CitG, an adenylylated ACP was produced, with the AMP residue attached to serine-14. The adenylyltransferase activity of CitX could be verified in vitro with purified CitX and apo-ACP plus ATP as substrates. Besides ATP, CTP, GTP, and UTP also served as nucleotidyl donors in vitro, showing that CitX functions as a nucleotidyltransferase. The conversion of apo-ACP into holo-ACP was achieved in vitro by incubation of apo-ACP with CitX, CitG, ATP, and dephospho-CoA. ATP could not be substituted with GTP, CTP, UTP, ADP, or AMP. In the absence of CitG or dephospho-CoA, AMP-ACP was formed. Remarkably, it was not possible to further convert AMP-ACP to holo-ACP by subsequent incubation with CitG and dephospho-CoA. This demonstrates that AMP-ACP is not an intermediate during the conversion of apo- into holo-ACP, but results from a side activity of CitX that becomes effective in the absence of its natural substrate. Our results indicate that holo-ACP formation proceeds as follows. First, a prosthetic group precursor [presumably 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA] is formed from ATP and dephospho-CoA in a reaction catalyzed by CitG. Second, holo-ACP is formed from apo-ACP and the prosthetic group precursor in a reaction catalyzed by CitX.  相似文献   

9.
Kinetic and equilibrium dialysis substrate binding studies have been done to investigate the properties of mitochondrial GTP-AMP phosphotransferase. The results show that the enzyme has a specific requirement for divalent metal ions, namely Mg2+, Mn2+ or Ca2+ (Ca2+ is active only in the forward direction, the direction of formation of ADP). The reaction rate depends upon the ratio [Mg2+]:[substrate] rather than on the metal ion concentration alone. The enzymatic activity is influenced by NaCl (or KCl) and optimum pH occurs at 11.5 and 9.5 for guanosine and inosine nucleotides respectively. Examination of binding of substrates to the enzyme showed that there is one binding site (GTP site) for MgGTP, GTP, MgGDP or GDP per molecule of enzyme, with dissociation constants of 4.5, 4.4, 3.0, 2.2 micron respectively and one binding site (AMP site) for AMP, ADP or ATP per molecule of enzyme with dissociation constants of 20.9, 33.4 and 33.4 microns respectively. Since, within the limitations of equilibrium dialysis used in the present studies, AMP binding to one site of the enzyme could be detected only when GDP or GTP is present, the mechanism of the forward reaction may be assumed to be nearly ordered. For the reverse reaction there is no requirement of order of binding of the two nucleotides and so the mechanism of reaction may be assumed to be random.  相似文献   

10.
All histidine tRNA molecules have an extra nucleotide, G-1, at the 5' end of the acceptor stem. In bacteria, archaea, and eukaryotic organelles, G-1 base pairs with C73, while in eukaryotic cytoplasmic tRNAHis, G-1 is opposite A73. Previous studies of Escherichia coli histidyl-tRNA synthetase (HisRS) have demonstrated the importance of the G-1:C73 base pair to tRNAHis identity. Specifically, the 5'-monophosphate of G-1 and the major groove amine of C73 are recognized by E. coli HisRS; these individual atomic groups each contribute approximately 4 kcal/mol to transition state stabilization. In this study, two chemically synthesized 24-nucleotide RNA microhelices, each of which recapitulates the acceptor stem of either E. coli or Saccharomyces cervisiae tRNAHis, were used to facilitate an atomic group "mutagenesis" study of the -1:73 base pair recognition by S. cerevisiae HisRS. Compared with E. coli HisRS, microhelixHis is a much poorer substrate relative to full-length tRNAHis for the yeast enzyme. However, the data presented here suggest that, similar to the E. coli system, the 5' monophosphate of yeast tRNA(His) is critical for aminoacylation by yeast HisRS and contributes approximately 3 kcal/mol to transition state stability. The primary role of the unique -1:73 base pair of yeast tRNAHis appears to be to properly position the critical 5' monophosphate for interaction with the yeast enzyme. Our data also suggest that the eukaryotic HisRS/tRNAHis interaction has coevolved to rely less on specific major groove interactions with base atomic groups than the bacterial system.  相似文献   

11.
Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.  相似文献   

12.
Smith BA  Jackman JE 《Biochemistry》2012,51(1):453-465
The tRNA(His) guanylyltransferase (Thg1) catalyzes the incorporation of a single guanosine residue at the -1 position (G(-1)) of tRNA(His), using an unusual 3'-5' nucleotidyl transfer reaction. Thg1 and Thg1 orthologs known as Thg1-like proteins (TLPs), which catalyze tRNA repair and editing, are the only known enzymes that add nucleotides in the 3'-5' direction. Thg1 enzymes share no identifiable sequence similarity with any other known enzyme family that could be used to suggest the mechanism for catalysis of the unusual 3'-5' addition reaction. The high-resolution crystal structure of human Thg1 revealed remarkable structural similarity between canonical DNA/RNA polymerases and eukaryotic Thg1; nevertheless, questions regarding the molecular mechanism of 3'-5' nucleotide addition remain. Here, we use transient kinetics to measure the pseudo-first-order forward rate constants for the three steps of the G(-1) addition reaction catalyzed by yeast Thg1: adenylylation of the 5' end of the tRNA (k(aden)), nucleotidyl transfer (k(ntrans)), and removal of pyrophosphate from the G(-1)-containing tRNA (k(ppase)). This kinetic framework, in conjunction with the crystal structure of nucleotide-bound Thg1, suggests a likely role for two-metal ion chemistry in all three chemical steps of the G(-1) addition reaction. Furthermore, we have identified additional residues (K44 and N161) involved in adenylylation and three positively charged residues (R27, K96, and R133) that participate primarily in the nucleotidyl transfer step of the reaction. These data provide a foundation for understanding the mechanism of 3'-5' nucleotide addition in tRNA(His) maturation.  相似文献   

13.
RNA capping by partially purified HeLa cell GTP:RNA guanylyltransferase has been shown to occur in the following sequence of two partial reactions involving a covalent protein-guanylate intermediate: (i) E(P68) + GTP in equilibrium E(P68-GMP) + PPi (ii) E(P68-GMP) + ppRNA in equilibrium GpppRNA + E(P68) Initially, the enzyme reacts with GTP in the absence of an RNA cap acceptor to form a covalent protein-guanylate complex. This complex consists of a GMP residue linked via a phosphoamide bond to a Mr = 68,000 protein. The enzyme then transfers the guanylate residue from the Mr = 68,000 polypeptide to the 5' end of diphosphate-terminated poly(a) to yield the capped derivative GpppA(pA)n. Both partial reactions have been shown to be reversible. In the reverse of Reaction i, E(P68--GMP) reacts with PPi to regenerate GTP. In the reverse of Reaction ii, the enzyme catalyzes the transfer of the 5'-GMP from capped RNA to the Mr = 68,000 protein to form protein-guanylate complex. A divalent cation is required for both partial reactions. The Mr = 68,000 protein is presumed to be a subunit of the HeLa guanylyltransferase. This interpretation is consistent with the sedimentation coefficient of 4.2 S of the native enzyme. Preliminary studies of RNA guanylyltransferase from mouse myeloma tumors suggest a similar mechanism of transguanylylation involving a Mr = 68,000 protein-guanylate complex. These data, in conjunction with previous studies of vaccinia virus guanylyltransferase (Shuman, S., and Hurwitz, J. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 187-191) suggests that covalent GMP-enzyme intermediates may be a general feature of the RNA capping reaction.  相似文献   

14.
Yeast AMP deaminase is allosterically activated by ATP and MgATP and inhibited by GTP and PO4. The tetrameric enzyme binds 2 mol each of ATP, GTP, and PO4/subunit with Kd values of 8.4 +/- 4.0, 4.1 +/- 0.6, and 169 +/- 12 microM, respectively. At 0.7 M KCl, ATP binds to the enzyme, but no longer activates. Titration with coformycin 5'-monophosphate, a slow, tight-binding inhibitor, indicates a single catalytic site/subunit. ATP and GTP bind at regulatory sites distinct from the catalytic site and their binding is mutually exclusive. Inorganic phosphate competes poorly with ATP for the ATP sites (Kd = 20.1 +/- 4.1 mM). However, near-saturating ATP reduces the moles of phosphate bound per subunit to 1 PO4, which binds with a Kd = 275 +/- 22 microM. In the presence of ATP, PO4 cannot effectively compete with ATP for the nucleotide triphosphate sites. The PO4 which binds in the presence of ATP is competitive with AMP at the catalytic site since the Kd equals the kinetic inhibition constant for PO4. Initial reaction rate curves are a cooperative function of AMP concentration and activation by ATP is also cooperative. However, no cooperativity is observed in the binding of any of the regulator ligands and ATP binding and kinetic activation by ATP is independent of substrate analog concentration. Cooperativity in initial rate curves results, therefore, from altered rate constants for product formation from each (enzyme.substrate)n species and not from cooperative substrate binding. The traditional cooperative binding models of allosteric regulation do not apply to yeast AMP deaminase, which regulates catalytic activity by kinetic control of product formation. The data are used to estimate the rates of AMP hydrolysis under reported metabolite concentrations in yeast.  相似文献   

15.
The steady-state mechanism of the aminoacylation of tRNAPhe by the corresponding synthetase from yeast has been investigated in detail by kinetic experiments. It was found that there are two alternative mechanisms: one favoured at low tRNA concentrations and the other at high tRNA concentrations. ATP and Phe are bound randomly to the enzyme. AMP is released immediately after the binding of ATP and Phe. Between the release of AMP and pyrophosphate (PPi) there is at least one additional step. Based on the experimental results a model of the steady-state mechanism is proposed. This model includes the sequence of addition of substrates to the enzyme and the release of products from the enzyme as well as the composition of the intermediate complexes with the enzyme. This model is in accordance with previous results based on different techniques. The results are explained by a "flip-flop" mechanism for all the substrates and products involved in the reaction.  相似文献   

16.
An RNA guanylyltransferase activity is involved in the synthesis of the cap structure found at the 5' end of eukaryotic mRNAs. The RNA guanylyltransferase activity is a two-step ping-pong reaction in which the enzyme first reacts with GTP to produce the enzyme-GMP covalent intermediate with the concomitant release of pyrophosphate. In the second step of the reaction, the GMP moiety is then transferred to a diphosphorylated RNA. Both reactions were previously shown to be reversible. In this study, we report a biochemical and thermodynamic characterization of both steps of the reaction of the RNA guanylyltransferase from Paramecium bursaria Chlorella virus 1, the prototype of a family of viruses infecting green algae. Using a combination of real-time fluorescence spectroscopy, radioactive kinetic assays, and inhibition assays, the complete kinetic parameters of the RNA guanylyltransferase were determined. We produced a thermodynamic scheme for the progress of the reaction as a function of the energies involved in each step. We were able to demonstrate that the second step comprises the limiting steps for both the direct and reverse overall reactions. In both cases, the binding to the RNA substrates is the step requiring the highest energy and generating unstable intermediates that will promote the catalytic activites of the enzyme. This study reports the first thorough kinetic and thermodynamic characterization of the reaction catalyzed by an RNA capping enzyme.  相似文献   

17.
Experiments were conducted to investigate structural features of the aminoacyl stem region of precursor histidine tRNA critical for the proper cleavage by the catalytic RNA component of RNase P that is responsible for 5' maturation. Histidine tRNA was chosen for study because tRNAHis has an 8 base pair instead of the typical 7-base pair aminoacyl stem. The importance of the 3' proximal CCA sequence in the 5'-processing reaction was also investigated. Our results show that the tRNAHis precursor patterned after the natural Bacillus subtilis gene is cleaved by catalytic RNAs from B. subtilis or Escherichia coli, leaving an extra G residue at the 5'-end of the aminoacyl stem. Replacing the 3' proximal CCA sequence in the substrate still allowed the catalytic RNA to cleave at the proper position, but it increased the Km of the reaction. Changing the sequence of the 3' leader region to increase the length of the aminoacyl stem did not alter the cleavage site but reduced the reaction rate. However, replacing the G residue at the expected 5' mature end by an A changed the processing site, resulting in the creation of a 7-base pair aminoacyl stem. The Km of this reaction was not substantially altered. These experiments indicate that the extra 5' G residue in B. subtilis tRNAHis is left on by RNase P processing because of the precursor's structure at the aminoacyl stem and that the cleavage site can be altered by a single base change. We have also shown that the catalytic RNA alone from either B. subtilis or E. coli is capable of cleaving a precursor tRNA in which the 3' proximal CCA sequence is replaced by other nucleotides.  相似文献   

18.
19.
CobU is a bifunctional enzyme involved in adenosylcobalamin (coenzyme B(12)) biosynthesis in Salmonella typhimurium LT2. In this bacterium, CobU is the adenosylcobinamide kinase/adenosylcobinamide-phosphate guanylyltransferase needed to convert cobinamide to adenosylcobinamide-GDP during the late steps of adenosylcobalamin biosynthesis. The guanylyltransferase reaction has been proposed to proceed via a covalently modified CobU-GMP intermediate. Here we show that CobU requires a nucleoside upper ligand on cobinamide for substrate recognition, with the nucleoside base, but not the 2'-OH group of the ribose, being important for this recognition. During the kinase reaction, both the nucleotide base and the 2'-OH group of the ribose are important for gamma-phosphate donor recognition, and GTP is the only nucleotide competent for the complete nucleotidyltransferase reaction. Analysis of the ATP:adenosylcobinamide kinase reaction shows CobU becomes less active during this reaction due to the formation of a covalent CobU-AMP complex that holds CobU in an altered conformation. Characterization of the GTP:adenosylcobinamide-phosphate guanylyltransferase reaction shows the covalent CobU-GMP intermediate is on the reaction pathway for the generation of adenosylcobinamide-GDP. Identification of a modified histidine and analysis of cobU mutants indicate that histidine 46 is the site of guanylylation.  相似文献   

20.
AMP deaminases of rat small intestine   总被引:1,自引:0,他引:1  
Phosphocellulose column chromatography revealed the existence of two forms of AMP deaminase both in whole tissue and in the intestinal epithelium. AMP deaminase I, which eluted from the column as a first activity peak, exhibited hyperbolic, nonregulatory kinetics. The substrate half-saturation constants were determined to be 0.3 and 0.7 mM at pH 6.5 and 7.2, respectively, and did not change in the presence of ATP, GTP and Pi. AMP deaminase II, which eluted from the column as a second activity peak, was strongly activated by ATP and inhibited by GTP and Pi. The S0.5 constants were 3.5 and 7.1 at pH 6.5 and 7.2, respectively. At pH 7.2 ATP (1 mM) S0.5 decreased to 2.5 mM and caused the sigmoidicity to shift to hyperbolic. The ATP half-activation constant was increased 9-fold in the presence of GTP and was not affected by Pi. Mg2+ significantly altered the effects exerted by nucleotides. The S0.5 value was lowered 10-fold in the presence of MgATP and 5-fold in the presence of MgATP, MgGTP and Pi. When MgATP was present, AMP deaminase II from rat small intestine was less susceptible to inhibition by GTP and Pi. A comparison of the kinetic properties of the enzyme, in particular the greater than 100% increase in Vmax observed in the presence of MgCl2 at low (1 mM) substrate concentration, indicates that MgATP is the true physiological activator. GuoPP[NH]P at low concentrations, in contrast to GTP, did not affect the enzyme and even activated it at concentrations above 0.2 mM. We postulate that AMP deaminase II may have a function similar to that of the rat liver enzyme. The significance of the existence of an additional, non-regulatory form of AMP deaminase in rat small intestine is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号