首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that S1P(1), S1P(2), S1P(3), and S1P(5) receptors existed in the cat esophagus. Only penetration of EDG-5 (S1P(2)) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by S1P(2) receptors coupled to a PTX-sensitive G(i) protein. Specific antibodies to G(i2), G(q) and G(beta) inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive G(q) and G(beta) dimers as well as the PTX-sensitive G(i2). Contraction was not affected by the phospholipase A2 inhibitor DEDA, or the PLD inhibitor rho-chloromer-curibenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with PLCb3 antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since PKCepsilon antibody inhibited contraction, PKCe may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by S1P(2) receptors coupled to PTX-sensitive G(i2) proteins, and PTX-insensitive G(q) and G(beta) proteins, and that the resulting activation of the PLCb3 and PKCepsilon pathway leads to activation of a p44/p42 MAPK pathway.  相似文献   

2.
Inositol trisphosphate, calcium and muscle contraction   总被引:13,自引:0,他引:13  
The identity of organelles storing intracellular calcium and the role of Ins(1,4,5)P3 in muscle have been explored with, respectively, electron probe X-ray microanalysis (EPMA) and laser photolysis of 'caged' compounds. The participation of G-protein(s) in the release of intracellular Ca2+ was determined in saponin-permeabilized smooth muscle. The sarcoplasmic reticulum (SR) is identified as the major source of activator Ca2+ in both smooth and striated muscle; similar (EPMA) studies suggest that the endoplasmic reticulum is the major Ca2+ storage site in non-muscle cells. In none of the cell types did mitochondria play a significant, physiological role in the regulation of cytoplasmic Ca2+. The latency of guinea pig portal vein smooth muscle contraction following photolytic release of phenylephrine, an alpha 1-agonist, is 1.5 +/- 0.26 s at 20 degrees C and 0.6 +/- 0.18 s at 30 degrees C; the latency of contraction after photolytic release of Ins(1,4,5)P3 from caged Ins(1,4,5)P3 is 0.5 +/- 0.12 s at 20 degrees C. The long latency of alpha 1-adrenergic Ca2+ release and its temperature dependence are consistent with a process mediated by G-protein-coupled activation of phosphatidylinositol 4,5 bisphosphate (PtdIns(4,5)P2) hydrolysis. GTP gamma S, a non-hydrolysable analogue of GTP, causes Ca2+ release and contraction in permeabilized smooth muscle. Ins(1,4,5)P3 has an additive effect during the late, but not the early, phase of GTP gamma S action, and GTP gamma S can cause Ca2+ release and contraction of permeabilized smooth muscles refractory to Ins(1,4,5)P3. These results suggest that activation of G protein(s) can release Ca2+ by, at least, two G-protein-regulated mechanisms: one mediated by Ins(1,4,5)P3 and the other Ins(1,4,5)P3-independent. The low Ins(1,4,5)P3 5-phosphatase activity and the slow time-course (seconds) of the contractile response to Ins(1,4,5)P3 released with laser flash photolysis from caged Ins(1,4,5)P3 in frog skeletal muscle suggest that Ins(1,4,5)P3 is unlikely to be the physiological messenger of excitation-contraction coupling of striated muscle. In contrast, in smooth muscle the high Ins(1,4,5)P3-5-phosphatase activity and the rate of force development after photolytic release of Ins(1,4,5)P3 are compatible with a physiological role of Ins(1,4,5)P3 as a messenger of pharmacomechanical coupling.  相似文献   

3.
Sphingosine-1-phosphate regulates diverse biological processes through five receptor types, S1P(1-5). Two or more S1P receptors are usually co-expressed on target cells. We have previously shown that smooth muscle cells of the gut co-express S1P(1) and S1P(2) receptors that could mediate distinct functions. In the absence of selective agonists and antagonists, we developed siRNA constructs to silence each receptor separately. The constructs were based on identical sequences in several mammalian species. A lentiviral vector-based system was used to deliver siRNA into HEK293T cells and smooth muscle cells. One S1P(1) and two S1P(2) siRNA constructs specifically inhibited ectopic expression of S1P(1) and S1P(2) receptors, respectively, as determined by immunocytochemistry and Western blot, and endogenous expression of S1P(1) and S1P(2) receptors in smooth muscle cells, as determined by RT-PCR. Measurement of PLC-beta and Rho kinase activities, which mediate initial and sustained muscle contraction, confirmed receptor silencing and showed that contraction is mediated exclusively by S1P(2) receptors.  相似文献   

4.
Adenosine triphosphate (ATP) is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, alpha, beta methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.  相似文献   

5.
We have identified the low MW 27 kD heat shock protein as a major phosphoprotein constituent of smooth muscle and have investigated its potential role in agonist induced smooth muscle contraction. The neuropeptides bombesin and substance P, which are present in neurons of the anorectal region, induce contraction of isolated smooth muscle cells from this region by activating different intracellular pathways. Substance P-induced contraction is 1,4,5-inositol trisphosphate (IP3)/calmodulin dependent, while contraction induced by bombesin is mediated by a protein kinase C (PKC)-dependent pathway. The sustained contraction induced by bombesin or exogenous PKC was blocked by preincubation of cells with monoclonal antibodies to hsp27, while the transient contraction induced by substance P or IP3 was unaffected by the antibodies. Preincubation with isotype matched control antibodies had no inhibitory effect on contraction induced in response to the agents used. These data support a novel role for hsp27 in the non calmodulin mediated sustained contraction induced by bombesin or PKC.  相似文献   

6.
We have previously shown that sphingosine 1-phosphate (S1P) can induce intracellular Ca(2+) mobilization and cell contraction in C2C12 myoblasts and that the two phenomena are temporally unrelated. Although Ca(2+)-independent mechanisms of cell contraction have been the focus of numerous studies on Ca(2+) sensitization of smooth muscle, comparatively less studies have focused on the role that these mechanisms play in the regulation of skeletal muscle contractility. Phosphorylation and activation of myosin by Rho-dependent kinase mediate most of Ca(2+)-independent contractile responses. In the present study, we examined the potential role of Rho/Rho-kinase cascade activation in S1P-induced C2C12 cell contraction. First, we showed that depletion of Ca(2+), by pre-treatment with BAPTA, did not affect S1P-induced myoblastic contractility, whereas it abolished S1P-induced Ca(2+) transients. These results correlated with the absence of troponin C and with the immature cytoskeletal organization of these cells. Experimental evidence demonstrating the involvement of Rho pathway in S1P-stimulated myoblast contraction included: the activation/translocation of RhoA to the membrane in response to agonist-stimulation in cells depleted of Ca(2+) and the inhibition of dynamic changes of the actin cytoskeleton in cells where Rho functions had been inhibited either by overexpression of RhoGDI, a physiological inhibitor of GDP dissociation from Rho proteins, or by pretreatment with Y-27632, a specific Rho kinase inhibitor. Contribution of protein kinase C in this cytoskeletal rearrangement was also evaluated. However, the pretreatment with G?6976 or rottlerin, specific inhibitors of PKC alpha and PKC delta, respectively, failed to inhibit the agonist-induced myoblastic contraction. Single particle tracking of G-actin fluorescent probe was performed to statistically evaluate actin cytoskeletal dynamics in response to S1P. Stimulation with S1P was also able to increase the phosphorylation level of myosin light chain II. In conclusion, our results strongly suggest that Ca(2+)-independent/Rho-Rho kinase-dependent pathways may exert an important role in S1P-induced myoblastic cell contraction.  相似文献   

7.
Jin Z  Guo HS  Xu DY  Hong MY  Li XL  Xu WX 《生理学报》2004,56(6):678-684
为探讨非肾上腺素能非胆碱能神经递质对胃窦环行肌功能的调节作用,在离体胃平滑肌上观察了嘌呤拟似物对胃窦环行肌自发性收缩活动和电活动的影响。电活动用传统的细胞内微电极记录,并和收缩活动同步描记于多道生理记录仪。结果表明,嘌呤能P2Y受体激动剂,三磷酸腺苷(ATP)和2-methylthio ATP(2-MeSATP)均增强胃窦平滑肌的收缩活动,但不影响电活动,而且ATP和2-MeSATP对胃平滑肌收缩活动的增强作用可被嘌呤能P2Y受体阻断剂,reactive blue-2和苏拉明(suramin)所阻断。用100μmol/L α,β-MeATP引起的脱敏感使P2X受体被阻断,ATP增强胃窦平滑肌收缩活动的效应不受影响。嘌呤能P2X受体激动剂,α,β-MeATP明显抑制胃窦环行肌自发性收缩活动,同时使膜电位明显超极化。ATP对胃窦平滑肌的收缩作用不被L型钙通道阻断剂尼卡地平(nicardipine)阻断,但细胞外用无钙液灌流时这种效应则完全被阻断。用前列腺素合成抑制剂消炎痛预先处理20min后,ATP和2-MeSATP仍能增强胃窦平滑肌的自发性收缩活动。以上结果提示:(1)ATP和2-MeSATP通过嘌呤能P2Y受体增强胃窦平滑肌的自发性收缩活动,而α,β-MeATP或β,γ-MeATP通过嘌呤能P2X受体使膜电位超极化,引起胃窦平滑肌的舒张;(2)ATP和2-MeSATP增强胃窦平滑肌自发性收缩活动的效应依赖于细胞外钙,但钙离子进入细胞的途径并不是电压依赖性钙通道;(3)ATP和2-MeSATP增强胃窦平滑肌自发性收缩活动的效应不通过前列腺素介导。  相似文献   

8.
We examined the direct effect of motilin on longitudinal and circular smooth muscle cells isolated from the guinea pig small intestine. In addition, the effects of 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8, an inhibitor of intracellular Ca(2+)-release), verapamil (a voltage-dependent Ca(2+)-channel blocker), and removal of extracellular Ca2+ were investigated to evaluate the role of intracellular Ca2+ stores and extracellular Ca2+ on the muscle contraction induced by motilin. The effects of atropine (a muscarinic receptor antagonist), spantide (a substance P receptor antagonist) and loxiglumide (a CCK-receptor antagonist) were also examined to determine whether the motilin-induced contraction was independent of those receptors. Motilin induced a contraction of the longitudinal and circular smooth muscle cells in a dose-dependent manner with the maximal effect attained after 30 seconds of incubation. The ED50 values were 0.3 nM and 0.05 nM, respectively. TMB-8 suppressed completely the motilin-induced contraction of both types of smooth muscle cells. Verapamil had only a slight suppressive effect. Removal of extracellular Ca2+ did not have any significant influence on motilin-induced contraction. The contractile response to motilin was not affected by atropine, spantide or loxiglumide. Our findings showed that:1) motilin has a direct contractile effect on both longitudinal and circular smooth muscle cells; 2) this contractile effect is not evoked via muscarinic, substance P or CCK receptors, and 3) the intracellular release of Ca2+ plays an important role in the contractile response to motilin on both types of smooth muscle cells.  相似文献   

9.
Sphingosine-1-phosphate (S1P) induces an initial Ca(2+)-dependent contraction followed by a sustained Ca(2+)-independent, RhoA-mediated contraction in rabbit gastric smooth muscle cells. The cells coexpress S1P(1) and S1P(2) receptors, but the signaling pathways initiated by each receptor type and the involvement of one or both receptors in contraction are not known. Lentiviral vectors encoding small interfering RNAs were transiently transfected into cultured smooth muscle cells to silence S1P(1) or S1P(2) receptors. Phospholipase C (PLC)-beta activity and Rho kinase activity were used as markers of pathways mediating initial and sustained contraction, respectively. Silencing of S1P(1) receptors abolished S1P-stimulated activation of Galpha(i3) and partially inhibited activation of Galpha(i1), whereas silencing of S1P(2) receptors abolished activation of Galpha(q), Galpha(13), and Galpha(i2) and partially inhibited activation of Galpha(i1). Silencing of S1P(2) but not S1P(1) receptors suppressed S1P-stimulated PLC-beta and Rho kinase activities, implying that both signaling pathways were mediated by S1P(2) receptors. The results obtained by receptor silencing were corroborated by receptor inactivation. The selective S1P(1) receptor agonist SEW2871 did not stimulate PLC-beta or Rho kinase activity or induce initial and sustained contraction; when this agonist was used to protect S1P(1) receptors so as to enable chemical inactivation of S1P(2) receptors, S1P did not elicit contraction, confirming that initial and sustained contraction was mediated by S1P(2) receptors. Thus S1P(1) and S1P(2) receptors are coupled to distinct complements of G proteins. Only S1P(2) receptors activate PLC-beta and Rho kinase and mediate initial and sustained contraction.  相似文献   

10.
N-formyl-methionyl-leucyl-phenylalanine (FMLP), a synthetic analogue of bacterial chemotactic peptide, may play a role in airway hyperresponsiveness, and is cleaved by neutral endopeptidase-24.11 (enkephalinase). To determine the effect of FMLP on parasympathetic contraction of airway smooth muscle and its modulation by endogenous enkephalinase, we studied isolated rabbit tracheal ring segments under isometric conditions in vitro. FMLP did not cause muscle contraction, but it potentiated the contractile response to electrical field stimulation (EFS) in a dose-dependent fashion, with the maximal increase from the baseline response being 59.8 +/- 6.2% (mean +/- S.E.M., P less than 0.001), an effect that was abolished by t-Boc-Phe-Leu-Phe-Leu-Phe, partially inhibited by pyrilamine, but not by phentolamine or [D-Pro2,D-Trp7,9]substance P. In contrast, the contractile response to administered acetylcholine was not affected by FMLP. Pretreatment of tissues with thiorphan, an enkephalinase inhibitor, further potentiated the effect of FMLP on the EFS-induced contraction. These results suggest that FMLP facilitates cholinergic neurotransmission in rabbit airway smooth muscle probably by increasing acetylcholine release, and that this effect may be modulated by enkephalinase in the airway.  相似文献   

11.
12.
Smooth muscles are divided into slowly contracting tonic and relatively fast phasic muscles. In both cases Ca2+ is a key mediator of the contractile response. However, the appearance of a tonic component during sphincter or arterial muscle contraction and its absence in contracting visceral smooth muscle is characteristic of their difference. We have found that in chicken tissues phorbol 12,13-dibutyrate (PDBu) induces a sustained contraction in carotid arterial muscle, but provokes no contraction in phasic gizzard smooth muscle. Next we were aimed to find differences in PDBu-induced phosphorylation of the key proteins involved in regulation of smooth muscle contraction, i.e. caldesmon, myosin light chain kinase (MLCK), and the myosin light chain kinase-related protein (KRP, also known as telokin). Two correlative differences were observed. 1. PDBu stimulated phosphorylation of MLCK in tonic smooth muscle and had no effect on the level of MLCK phosphorylation in phasic muscle. Phosphopeptide mapping suggests the involvement of mitogen-activated protein (MAP) kinases in phosphorylation of MLCK in situ. 2. PDBu induced phosphorylation of MAP-kinase sites in caldesmon in both types of smooth muscle, but this phosphorylation had no significant effect on caldesmon functional activity in vitro. For the first time we have shown that in gizzard PDBu also stimulates a yet unknown transitory caldesmon-kinase different from protein kinase, C, Ca2+/calmodulin-dependent kinase II and casein kinase CK2. 3. No significant difference was found in the kinetics of PDBu-dependent phosphorylation of KRP in tonic and phasic smooth muscles. KRP was also demonstrated to be a major phosphoprotein in smooth muscle phosphorylated in vivo at several sites located within its N-terminal sequence. Protein kinases able to phosphorylate these sites were identified in vitro. Among them, MAP-kinase was suggested to phosphorylate a serine residue homologous to that phosphorylated in MLCK. 4. p42erk2 and p38 MAP-kinases were found in phasic and tonic smooth muscles. Both were responsive to PDBu in cultured chicken aortic smooth muscle cells, and their role in phosphorylation of MLCK and low molecular weight isoform of caldesmon was evaluated.  相似文献   

13.
Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation.  相似文献   

14.
This study was designed to evaluate the role of neutral endopeptidase (NEP) in modulating the airway smooth muscle contraction induced by endothelin-1 in isolated segments of guinea-pig trachea. Endothelin-1 (10(-9)-10(-6) M) produced a concentration-dependent contraction that reached a maximum by 30 min. The NEP inhibitor leucine-thiorphan (10(-5) M) significantly increased the contractile response to endothelin-1. The addition of leucine-thiorphan to tracheal segments precontracted by 10(-9) and 10(-8) M endothelin-1 increased isometric tension by 181 +/- 65% (mean +/- 1 S.E.M.; P less than 0.05) and by 138 +/- 49% (P less than 0.05), respectively. In contrast, the kininase II inhibitor captopril and the peptidase inhibitors leupeptin and bestatin had no effect. Preincubation of endothelin-1 with 1 microgram recombinant human NEP decreased the contractile activity of endothelin-1 by 72 +/- 9%, whereas no effect was observed using heat-inactivated NEP. We conclude that NEP modulates endothelin-induced contraction of airway smooth muscle in the guinea-pig trachea.  相似文献   

15.
Contraction is a central feature for skeletal, cardiac and smooth muscle; this unique feature is largely dependent on calcium (Ca2+) signaling and therefore maintenance of internal Ca2+ stores. Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane protein that functions as a Ca2+ sensor for the activation store-operated calcium channels (SOCCs) on the plasma membrane in response to depleted internal sarco(endo)plasmic (S/ER) reticulum Ca2+ stores. STIM1 was initially characterized in non-excitable cells; however, evidence from both animal models and human mutations suggests a role for STIM1 in modulating Ca2+ homeostasis in excitable tissues as well. STIM1-dependent SOCE is particularly important in tissues undergoing sustained contraction, leading us to believe STIM1 may play a role in smooth muscle contraction. To date, the role of STIM1 in smooth muscle is unknown. In this review, we provide a brief overview of the role of STIM1-dependent SOCE in striated muscle and build off that knowledge to investigate whether STIM1 contributes to smooth muscle contractility. We conclude by discussing the translational implications of targeting STIM1 in the treatment of smooth muscle disorders.  相似文献   

16.
Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.  相似文献   

17.
Abl is a nonreceptor tyrosine kinase that has a role in regulating migration and adhesion of nonmuscle cells as well as smooth muscle contraction. The role of Abl in smooth muscle cell proliferation has not been investigated. In this study, treatment with endothelin-1 (ET-1) and platelet-derived growth factor (PDGF) increased Abl phosphorylation at Tyr(412) (an indication of Abl activation) in vascular smooth muscle cells. To assess the role of Abl in smooth muscle cell proliferation, we generated stable Abl knockdown cells by using lentivirus-mediated RNA interference. ET-1- and PDGF-induced cell proliferation was attenuated in Abl knockdown cells compared with cells expressing control shRNA and uninfected cells. Abl silencing also arrested cell cycle progression from G(0)/G(1) to S phase. Furthermore, activation of smooth muscle cells with ET-1 and PDGF induced phosphorylation of ERK1/2 and Akt. Abl knockdown attenuated ERK1/2 phosphorylation in smooth muscle cells stimulated with ET-1 and PDGF. However, Akt phosphorylation upon stimulation with ET-1 and PDGF was not reduced. Because Abl is known to regulate actin polymerization in smooth muscle, we also evaluated the effects of inhibition of actin polymerization on phosphorylation of ERK1/2. Pretreatment with the actin polymerization inhibitor latrunculin-A also blocked ERK1/2 phosphorylation during activation with ET-1 and PDGF. The results suggest that Abl may regulate smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 phosphorylation during mitogenic activation.  相似文献   

18.
Sphingosine-1-phosphate (S1P), acting through five closely related G-protein coupled receptors termed S1P1-5, has recently emerged as a possible regulator of smooth muscle cell (SMC) physiology with the potential to induce contraction, proliferation and stress fiber formation. In the present study, real-time quantitative PCR was used to determine the expression patterns of S1P receptor subtypes in human primary pulmonary artery smooth muscle cells (PASMC). We report here that subconfluent PASMC express predominantly S1P2 and S1P3 receptors and we show that S1P1 receptor mRNA levels are significantly up-regulated following basic fibroblast growth factor (bFGF) treatment. As a consequence, increased responsiveness, as measured by impedance and ERK1/2 phosphorylation, was observed upon stimulation with a specific S1P1 receptor agonist SEW2871. We therefore demonstrate, for the first time, that a growth factor that was previously shown to be involved in physiological and pathological changes of SMC function induced S1P1 receptor expression and we propose that S1P1 receptor up-regulation could contribute to vascular remodeling.  相似文献   

19.
Regulation of vascular smooth muscle tone by caldesmon.   总被引:14,自引:0,他引:14  
Caldesmon is an actin-binding protein present in smooth muscle cells that also inhibits actin-activated myosin ATPase activity. To assess the possible role of caldesmon in the regulation of smooth contraction, we investigated the effects of synthetic peptides on force directly recorded from single hyperpermeable smooth muscle cells of ferret aorta and portal vein. GS17C, a peptide that contains the residues from Gly651 to Ser667 of the caldesmon sequence plus an added cysteine at the C terminus, binds calmodulin in a Ca(2+)-dependent manner and also binds to F-actin but does not inhibit actomyosin ATPase activity (Zhan, Q., Wong, S.S., and Wang, C.-L.A. (1991) J. Biol. Chem. 266, 21810-21814). In cells in which Ca2+ was clamped at pCa 7.0, GS17C induced a dose-dependent contraction (EC50 = 0.92 microM) in aorta cells, whereas it evoked little or no contraction in portal vein cells. The GS17C-induced contraction in aorta cells was inhibited at higher Ca2+ concentrations (above pCa 6.6) and by pretreatment with calmodulin. Another peptide, C16AA, which contains the residues from Ala594 to Ala609 and does not bind actin or calmodulin, did not induce contraction. Our results strongly suggest that GS17C induces contraction by the displacement of the inhibitory region of endogenous caldesmon and, furthermore, that caldesmon present in these smooth muscle cells regulates contraction by providing a basal resting inhibition of vascular tone.  相似文献   

20.
Haystead TA 《Cellular signalling》2005,17(11):1313-1322
Two major physiological roles have been defined for zipper interacting protein kinase (ZIPK), regulation of apoptosis in non-muscle cells and regulation of Ca(2+) sensitization in smooth muscle. Although much attention has focused on the role of ZIPK in the regulation of apoptotic events, its roles in smooth muscle are likely to have equal if not greater physiological relevance. We first identified ZIPK as a major protein kinase controlling the phosphorylation of myosin phosphatase (SMPP-1M) and the inhibitor protein CPI17 in smooth muscle. Phosphorylation of SMPP-1M and CPI17 by ZIPK inhibits phosphatase activity towards myosin and causes profound Ca(2+) sensitization and contraction in smooth muscle. ZIPK will also directly phosphorylate both muscle and non-muscle myosin. The highly selective actions of ZIPK in the control of myosin phosphorylation potentially make the enzyme an ideal candidate for the development of novel therapeutics to treat smooth muscle related disorders such as hypertension or asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号