首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PYRIN-CARD protein ASC is an activating adaptor for caspase-1   总被引:19,自引:0,他引:19  
The PYRIN and CARD domains are members of the six-helix bundle death domain-fold superfamily that mediates assembly of large signaling complexes in the apoptotic and inflammatory signaling pathways. Here we show that the PYRIN-CARD protein ASC functions as a caspase-1-activating adaptor. ASC interacted specifically with procaspase-1 via CARD-CARD interactions and induced its oligomerization. Consistent with these results ectopic expression of full-length ASC, but not its isolated CARD or PYRIN domain, with procaspase-1 induced activation of procaspase-1 and processing of pro-interleukin-1beta in transfected cells. Substitution of the PYRIN domain of ASC with an inducible FKBP12 oligomerization domain produced a molecule that can induce caspase-1 activation in response to stimulation with the oligomerization drug AP20187, suggesting that the PYRIN domain functions as an oligomerization domain, whereas the CARD domain functions as the effector domain in the caspase-1 activation pathway. Furthermore stable expression of an isolated CARD of ASC in THP-1 cells diminished interleukin-1beta generation in response to pro-inflammatory cytokines. These results indicate that ASC is involved in the caspase-1 signaling pathway by mediating the assembly of a caspase-1-inflammasome signaling complex in response to pro-inflammatory cytokine stimulation.  相似文献   

2.
3.
Apoptosis plays an important role in the dysfunction of exocrine glands. Fas is a death-inducing receptor found on many types of cells including epithelial acinar cells. To elucidate the intracellular mechanism of Fas-mediated cell death in exocrine glands, an epithelial acinar cell line, SMG-C6, was studied. Caspase-1, -3, -8, and -9 activities were elevated in SMG-C6 cells after the induction of apoptosis by soluble Fas ligand (FasL). The activation of caspase-1 and -8 occurred prior to caspase-3 and -9 activation. The caspase-1 inhibitor, zYVAD-fmk, was effective in preventing cell death, whereas the caspase-3 and -8 inhibitors (ac-DEVD-CHO and ac-IETD-CHO, respectively) were not. zYVAD-fmk was able to inhibit caspase-3 activation indicating that caspase-1 is upstream to caspase-3. Furthermore, kinetic studies show that caspase-1 is an early event in the Fas apoptotic pathway. This study shows that caspase-1 participates in Fas-mediated apoptosis of epithelial cells by initiating the caspase cascade.  相似文献   

4.
The P35 protein derived from the baculovirus Autographa californica NPV has been characterized as an inhibitor of apoptotic cell death in a great number of organisms and situations. This potential has been further mapped to the capacity of P35 to inhibit all caspases investigated. Here we show that P35 does not inhibit caspase-9 activity in a cell-free system of mammalian caspase activation. In cell extracts, cytochrome c addition led to the activation of caspase-9, -3 and -7. When cytosolic extract from cells expressing P35 was added, caspase-9-mediated maturation of caspase-3 proceeded normally but caspase-3-mediated further events were prevented, such as complete processing of caspase-3, processing of caspase-7 and the appearance of DEVD-cleaving activity. The P35 protein from Bombyx mori NPV, which has been reported to have a much weaker anti-apoptosis activity in vivo, was found also to have significant caspase-3-inhibiting activity. These data suggest that P35 evolved specifically to inhibit effector rather than initiator caspases.  相似文献   

5.
The apoptosome is a large caspase-activating ( approximately 700-1400 kDa) complex, which is assembled from Apaf-1 and caspase-9 when cytochrome c is released during mitochondrial-dependent apoptotic cell death. Apaf-1 the core scaffold protein is approximately 135 kDa and contains CARD (caspase recruitment domain), CED-4, and multiple (13) WD40 repeat domains, which can potentially interact with a variety of unknown regulatory proteins. To identify such proteins we activated THP.1 lysates with dATP/cytochrome c and used sucrose density centrifugation and affinity-based methods to purify the apoptosome for analysis by MALDI-TOF mass spectrometry. First, we used a glutathione S-transferase (GST) fusion protein (GST-casp9(1-130)) containing the CARD domain of caspase-9-(1-130), which binds to the CARD domain of Apaf-1 when it is in the apoptosome and blocks recruitment/activation of caspase-9. This affinity-purified apoptosome complex contained only Apaf-1XL and GST-casp9(1-130), demonstrating that the WD40 and CED-4 domains of Apaf-1 do not stably bind other cytosolic proteins. Next we used a monoclonal antibody to caspase-9 to immunopurify the native active apoptosome complex from cell lysates, containing negligible levels of cytochrome c, second mitochondria-derived activator of caspase (Smac), or Omi/HtrA2. This apoptosome complex exhibited low caspase-processing activity and contained four stably associated proteins, namely Apaf-1, pro-p35/34 forms of caspase-9, pro-p20 forms of caspase-3, X-linked inhibitor of apoptosis (XIAP), and cytochrome c, which was only bound transiently to the complex. However, in lysates containing Smac and Omi/HtrA2, the caspase-processing activity of the purified apoptosome complex increased 6-8-fold and contained only Apaf-1 and the p35/p34-processed subunits of caspase-9. During apoptosis, Smac, Omi/HtrA2, and cytochrome c are released simultaneously from mitochondria, and thus it is likely that the functional apoptosome complex in apoptotic cells consists primarily of Apaf-1 and processed caspase-9.  相似文献   

6.
Lyssaviruses, which are members of the Rhabdoviridae family, induce apoptosis, which plays an important role in the neuropathogenesis of rabies. However, the mechanisms by which these viruses mediate neuronal apoptosis have not been elucidated. Here we demonstrate that the early induction of apoptosis in a model of lyssavirus-infected neuroblastoma cells involves a TRAIL-dependent pathway requiring the activation of caspase-8 but not of caspase-9 or caspase-10. The activation of caspase-8 results in the activation of caspase-3 and caspase-6, as shown by an increase in the cleavage of the specific caspase substrate in lyssavirus-infected cells. However, neither caspase-1 nor caspase-2 activity was detected during the early phase of infection. Lyssavirus-mediated cell death involves an interaction between TRAIL receptors and TRAIL, as demonstrated by experiments using neutralizing antibodies and soluble decoy TRAIL-R1/R2 receptors. We also demonstrated that the decapsidation and replication of lyssavirus are essential for inducing apoptosis, as supported by UV inactivation, cycloheximide treatment, and the use of bafilomycin A1 to inhibit endosomal acidification. Transfection of cells with the matrix protein induced apoptosis using pathways similar to those described in the context of viral infection. Furthermore, our data suggest that the matrix protein of lyssaviruses plays a major role in the early induction of TRAIL-mediated apoptosis by the release of a soluble, active form of TRAIL. In our model, Fas ligand (CD95L) appears to play a limited role in lyssavirus-mediated neuroblastoma cell death. Similarly, tumor necrosis factor alpha does not appear to play an important role.  相似文献   

7.
ASC is an adaptor molecule that mediates apoptotic and inflammatory signals from several Apaf-1-like molecules, including CARD12/Ipaf, cryopyrin/PYPAF1, PYPAF5, PYPAF7, and NALP1. To characterize the signaling pathway mediated by ASC, we established cell lines in which muramyl dipeptide, the bacterial component recognized by another Apaf-1-like molecule, Nod2, induced an interaction between a CARD12-Nod2 chimeric protein and ASC, and elicited cell autonomous NF-kappaB activation. This response required caspase-8, and was suppressed by CLARP/FLIP, an inhibitor of caspase-8. The catalytic activity of caspase-8 was required for the ASC-mediated NF-kappaB activation when caspase-8 was expressed at an endogenous level, although it was not essential when caspase-8 was overexpressed. In contrast, FADD, the adaptor protein linking Fas and caspase-8, was not required for this response. Consistently, ASC recruited caspase-8 and CLARP but not FADD and Nod2 to its speck-like aggregates in cells. Finally, muramyl dipeptide induced interleukin-8 production in MAIL8 cells. These results are the first to indicate that caspase-8 plays an important role in the ASC-mediated NF-kappaB activation, and that the ASC-mediated NF-kappaB activation actually induces physiologically relevant gene expression.  相似文献   

8.
Caspase-2 is an enigmatic caspase that is now increasingly being associated with certain types of cell death in cells exposed to cytotoxic agents. It is now known that in some cases of cell stress, such as DNA damage, activation of this caspase is triggered, sometimes in the absence of activation of both the intrinsic and extrinsic pathways of apoptosis. Part of the reason for this enigma has been lack of a suitable stimulus for this caspase, and with the discovery of DNAzyme 13 (Dz13), a potent oligonucleotide-based caspase-2 activator, much more can now be elucidated. For instance, one thing that could be unraveled is whether caspase-8 and Fas (CD95)-associated protein with death domain are indeed involved in caspase-2 activation as part of the death-inducing signaling complex. It is also becoming apparent that this enigmatic caspase may be important in the mechanisms behind which chemotherapeutic agents inhibit tumor cell growth. A better understanding of the true biological effects of this enzyme may indeed lead to more effective ways of managing tumors clinically. This review article briefly examines the different compounds capable of inducing activation of caspase-2 and proposes Dz13 as one that will be valuable for evaluation of the biological functions of caspase-2.  相似文献   

9.
Doxorubicin induces caspase-3 activation and apoptosis in Jurkat cells but inhibition of this enzyme did not prevent cell death, suggesting that another caspase(s) is critically implicated. Western blot analysis of cell extracts indicated that caspases 2, 3, 4, 6, 7, 8, 9, and 10 were activated by doxorubicin. Cotreatment of cells with the caspase inhibitors Ac-DEVD-CHO, Z-VDVAD-fmk, Z-IETD-fmk, and Z-LEHD-fmk alone or in combination, or overexpression of CrmA, prevented many morphological features of apoptosis but not loss of mitochondrial membrane potential (delta(psi)m), phospatidilserine exposure, and cell death. Western blot analysis of cells treated with doxorubicin in the presence of inhibitors allowed elucidation of the sequential order of caspase activation. Z-IETD-fmk or Z-LEHD-fmk, which inhibit caspase-9 activity, blocked the activation of all caspases studied, lamin B degradation, and the development of apoptotic morphology, but not cell death. All morphological and biochemical features of apoptosis, as well as cell death, were prevented by cotreatment of cells with the general caspase inhibitor Z-VAD-fmk or by overexpression of Bcl-2. Doxorubicin cytotoxicity was also blocked by the protein synthesis inhibitor cycloheximide. Delayed addition of Z-VAD-fmk after doxorubicin treatment, but prior to the appearance of cells displaying a low delta(psi)m, prevented cell death. These results, taken together, suggest that the key mediator of doxorubicin-induced apoptosis in Jurkat cells may be an inducible, Z-VAD-sensitive caspase (caspase-X), which would cause delta(psi)m loss, release of apoptogenic factors from mitochondria, and cell death.  相似文献   

10.
Wang P  Shi T  Ma D 《Life sciences》2006,79(10):934-940
Caspase-9 plays a key role in the intrinsic apoptotic pathway and currently two splice variants (caspase-9-alpha and -beta) have been identified. The present study cloned and characterized a novel caspase-9 splice variant, hereby designated Casp9-gamma. Casp9-gamma is generated from an additional alternative 3' splice site in the fourth exon of caspase-9, resulting in a 58-nucleotide fragment insertion compared with the full-length caspase-9-alpha. The fragment introduces an in-frame stop codon, and the resulting open reading frame (ORF) is preterminated. The Casp9-gamma comprises the deduced 154 amino acid residues containing only the caspase recruitment domain (CARD) and does not contain the large and small subunits. The Casp9-gamma does not promote apoptosis when overexpressed in mammalian cells. Moreover, it inhibits the cleavage of procaspase-3 mediated by proapoptotic member Bax or apoptosis inductor staurosporine. Therefore, Casp9-gamma may function as an endogenous apoptotic inhibitor by interfering with the CARD-CARD interaction between Apaf-1 (apoptotic protease activating factor-1) and procaspase-9. In addition, Casp9-gamma does not enhance NF-kappaB activation in transfected 293T cells, conflicting with previous evidence that the isolated CARD of caspase-9 activates NF-kappaB in ND7 cells. This suggests that the procaspase-9-mediated NF-kappaB activation in response to cellular stresses is cell type-specific through an unidentified mechanism.  相似文献   

11.
Previous studies by our laboratory have shown that the drug transporter protein P-glycoprotein, P-gp, can specifically inhibit Fas-induced caspase-3 activation and apoptosis. Importantly, inhibition of both caspase-3 activation and cell death could be reversed by pharmacological and antibody inhibitors of P-gp function. However, the molecular mechanisms underpinning P-gp-mediated resistance to Fas-induced cell death and caspase activation remained unknown. We therefore sought to identify the point(s) within the death receptor pathway at which P-gp exerted its inhibitory effect and to determine whether the ATPase activity of P-gp was required. Structure-function analysis determined that ATP hydrolysis was necessary for P-gp to confer resistance to Fas-induced caspase activation and cell death. Importantly, although both FADD and caspase-8 were recruited to the Death Inducing Signal Complex (DISC) in wild-type P-gp expressing cells following Fas ligation, subsequent activation of caspase-8 at the DISC was inhibited. The ability of P-gp to inhibit caspase-8 activation was also ATP dependent. These studies demonstrate that P-gp inhibits Fas-induced caspase-8 activation but not formation of the DISC and that this activity of P-gp is dependent on ATP hydrolysis.  相似文献   

12.
The production of bio-active interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, is mediated by activated caspase-1. One of the known molecular mechanisms underlying pro-caspase-1 processing and activation involves binding of the caspase-1 prodomain to a caspase recruitment domain (CARD)-containing serine/threonine kinase known as RIP2/CARDIAK/RICK. We have identified a novel protein, COP (CARD only protein), which has a high degree of sequence identity to the caspase-1 prodomain. COP binds to both RIP2 and the caspase-1 prodomain and inhibits RIP2-induced caspase-1 oligomerization. COP inhibits caspase- 1-induced IL-1beta secretion as well as lipopolysaccharide-induced IL-1beta secretion in transfected cells. Our data indicate that COP can regulate IL-1beta secretion, implying that COP may play a role in down-regulating inflammatory responses analogous to the CARD protein ICEBERG.  相似文献   

13.
Caspase activity is required not only for the death of T cells, but also for their activation. A delicate balance of caspase activity is thus required during T cell activation at a level that will not drive cell death. How caspase activity is initiated and regulated during T cell activation is not known. One logical candidate for this process is cellular FLIP long form (c-FLIP(L)), because it can block caspase-8 recruitment after Fas (CD95) ligation as well as directly heterodimerize with and activate caspase-8. The current findings demonstrate that after T cell activation, caspase-8 and c-FLIP(L) associate in a complex enriched for active caspases. This occurs coincidently with the cleavage of two known caspase-8 substrates, c-FLIP(L) and receptor interacting protein 1. Caspase activity is higher in wild-type CD8(+) than CD4(+) effector T cells. Increased expression of c-FLIP(L) results in augmented caspase activity in resting and effector T cells to levels that provoke cell death, especially of the CD8 subset. c-FLIP(L) is thus not only an inhibitor of cell death by Fas, it can also act as a principal activator of caspases independently of Fas.  相似文献   

14.
Dendritic cells provide a critical link between innate and acquired immunity. In this study, we demonstrate that the bacterial pathogen Salmonella enterica serovar Typhimurium can efficiently kill these professional phagocytes via a mechanism that is dependent on sipB and the Salmonella pathogenicity island 1-encoded type III protein secretion system. Rapid phosphatidylserine redistribution, caspase activation, and loss of plasma membrane integrity were characteristic of dendritic cells infected with wild-type Salmonella, but not sipB mutant bacteria. Caspase-1 was particularly important in this process because Salmonella-induced dendritic cell death was dramatically reduced in the presence of a caspase-1-specific inhibitor. Furthermore, dendritic cells obtained from caspase-1-deficient mice, but not heterozygous littermate control mice, were resistant to Salmonella-induced cytotoxicity. We hypothesize that Salmonella have evolved the ability to selectively kill professional APCs to combat, exploit, or evade immune defense mechanisms.  相似文献   

15.
Inhibitor-of-apoptosis proteins (IAPs), including neuronal apoptosis inhibitory protein (NAIP), inhibit cell death. Other IAPs inhibit key caspase proteases which effect cell death, but the mechanism by which NAIP acts is unknown. Here we report that NAIP, through its third baculovirus inhibitory repeat domain (BIR3), binds the neuron-restricted calcium-binding protein, hippocalcin, in an interaction promoted by calcium. In neuronal cell lines NSC-34 and Neuro-2a, over-expression of the BIR domains of NAIP (NAIP-BIR1-3) counteracted the calcium-induced cell death induced by ionomycin and thapsigargin. This protective capacity was significantly enhanced when NAIP-BIR1-3 was co-expressed with hippocalcin. Over-expression of the BIR3 domain or hippocalcin alone did not substantially enhance cell survival, but co-expression greatly increased their protective effects. These data suggest synergy between NAIP and hippocalcin in facilitating neuronal survival against calcium-induced death stimuli mediated through the BIR3 domain. Analysis of caspase activity after thapsigargin treatment revealed that caspase-3 is activated in NSC-34, but not Neuro-2a, cells. Thus NAIP, in conjunction with hippocalcin, can protect neurons against calcium-induced cell death in caspase-3-activated and non-activated pathways.  相似文献   

16.
Apoptosis was induced in human glioma cell lines by exposure to 100 nM calphostin C, a specific inhibitor of protein kinase C. Calphostin C-induced apoptosis was associated with synchronous down-regulation of Bcl-2 and Bcl-xL as well as activation of caspase-3 but not caspase-1. The exposure to calphostin C led to activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) and p38 kinase and concurrent inhibition of extracellular signal-regulated kinase (ERK). Upstream of ERK, Shc was shown to be activated, but its downstream Raf1 and ERK were inhibited. The pretreatment with acetyl-Tyr-Val-Ala-Asp-aldehyde, a relatively selective inhibitor of caspase-3, or benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD.fmk), a broad spectrum caspase inhibitor, similarly inhibited calphostin C-induced activation of SAPK/JNK and p38 kinase as well as apoptotic nuclear damages (chromatin condensation and DNA fragmentation) and cell shrinkage, suggesting that caspase-3 functions upstream of SAPK/JNK and p38 kinase, but did not block calphostin C-induced surface blebbing and cell death. On the other hand, the inhibition of SAPK/JNK by transfection of dominant negative SAPK/JNK and that of p38 kinase by SB203580 induced similar effects on the calphostin C-induced apoptotic phenotypes and cell death as did z-VAD.fmk and acetyl-Tyr-Val-Ala-Asp-aldehyde, but the calphostin C-induced PARP cleavage was not changed, suggesting that SAPK/JNK and p38 kinase are involved in the DNA fragmentation pathway downstream of caspase-3. The present findings suggest, therefore, that the activation of SAPK/JNK and p38 kinase is dispensable for calphostin C-mediated and z-VAD.fmk-resistant cell death.  相似文献   

17.
18.
Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1   总被引:10,自引:0,他引:10  
Procaspase-9 contains an NH2-terminal caspase-associated recruitment domain (CARD), which is essential for direct association with Apaf-1 and activation. Procaspase-1 also contains an NH2-terminal CARD domain, suggesting that its mechanism of activation, like that of procaspase-9, involves association with an Apaf-1-related molecule. Here we describe the identification of a human Apaf-1-related protein, named Ipaf that contains an NH2-terminal CARD domain, a central nucleotide-binding domain, and a COOH-terminal regulatory leucine-rich repeat domain (LRR). Ipaf associates directly and specifically with the CARD domain of procaspase-1 through CARD-CARD interaction. A constitutively active Ipaf lacking its COOH-terminal LRR domain can induce autocatalytic processing and activation of procaspase-1 and caspase-1-dependent apoptosis in transfected cells. Our results suggest that Ipaf is a specific and direct activator of procaspase-1 and could be involved in activation of caspase-1 in response to pro-inflammatory and apoptotic stimuli.  相似文献   

19.
Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.  相似文献   

20.
Respiratory syncytial virus (RSV) infection induced programmed cell death or apoptosis in the cultured lung epithelial cell line, A549. The apoptotic cells underwent multiple changes, including fragmentation and degradation of genomic DNA, consistent with the activation of the DNA fragmentation factor or caspase-activated DNase (DFF or CAD). The infection led to activation of FasL; however, a transdominant mutant of FAS-downstream death domain protein, FADD, did not inhibit apoptosis. Similarly, modest activation of cytoplasmic apoptotic caspases, caspase-3 and -8, were observed; however, only a specific inhibitor of caspases-3 inhibited apoptosis, while an inhibitor of caspase-8 had little effect. No activation of caspase-9 and -10, indicators of the mitochondrial apoptotic pathway, was observed. In contrast, RSV infection strongly activated caspase-12, an endoplasmic reticulum (ER) stress response caspase. Activation of the ER stress response was further evidenced by upregulation of ER chaperones BiP and calnexin. Antisense-mediated inhibition of caspase-12 inhibited apoptosis. Inhibitors of NF-kappa B had no effect on apoptosis. Thus, RSV-induced apoptosis appears to occur through an ER stress response that activates caspase-12, and is uncoupled from NF-kappa B activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号