首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Ruth A  Stein WD  Rose E  Roninson IB 《Biochemistry》2001,40(14):4332-4339
The MDR1 P-glycoprotein (Pgp), responsible for a clinically important form of multidrug resistance in cancer, is an ATPase efflux pump for multiple lipophilic drugs. The G185V mutation near transmembrane domain 3 of human Pgp increases its relative ability to transport several drugs, including etoposide, but decreases the transport of other substrates. MDR1 cDNA with the G185V substitution was used in a function-based selection to identify mutations that would further increase Pgp-mediated resistance to etoposide. This selection yielded the I186N substitution, adjacent to G185V. Pgps with G185V, I186N, or both mutations were compared to the wild-type Pgp for their ability to confer resistance to different drugs in NIH 3T3 cells. In contrast to the differential effects of G185V, I186N mutation increased resistance to all the tested drugs and augmented the effect of G185V on etoposide resistance. The effects of the mutations on conformational transitions of Pgp induced by different drugs were investigated using a conformation-sensitive antibody UIC2. Ligand-binding analysis of the drug-induced increase in UIC2 reactivity was used to determine the K(m) value that reflects the apparent affinity of drugs for Pgp, and the Hill number reflecting the apparent number of drug-binding sites. Both mutations altered the magnitude of drug-induced increases in UIC2 immunoreactivity, the K(m) values, and the Hill numbers for individual drugs. Mutation-induced changes in the magnitude of UIC2 reactivity shift did not correlate with the effects of the mutations on resistance to the corresponding drugs. In contrast, an increase or a decrease in drug resistance relative to that of the wild type was accompanied by a corresponding increase or decrease in the K(m) or in both the K(m) and the Hill number. These results suggest that mutations that alter the ability of Pgp to transport individual drugs change the apparent affinity and the apparent number of drug-binding sites in Pgp.  相似文献   

2.
To determine the number of drug binding sites that exist on the multidrug transporter, P-glycoprotein, we used azidopine, a dihydropyridine photoaffinity compound that reverses multidrug resistance and labels P-glycoprotein. Azidopine labels P-glycoprotein in two distinct locations: one labeled site is within the amino half of P-glycoprotein between amino acid residues 198 and 440, and the other site is within the carboxy half of the protein. Vinblastine is a cytotoxic drug that is used in cancer chemotherapy and is a substrate for transport by P-glycoprotein. We found that vinblastine inhibits azidopine labeling to approximately the same extent at each labeled site on P-glycoprotein. Because several studies have shown that amino acid residue 185 of P-glycoprotein plays a critical role in some aspects of drug binding and transport, we also studied the effect that amino acid residue 185 has on azidopine labeling. These studies show that azidopine labels both sites equivalently in both wild-type (G185) and mutant (V185) P-glycoproteins. We conclude from our results that the two halves of P-glycoprotein approach each other to form a single binding site for these drugs.  相似文献   

3.
Human P-glycoprotein (Pgp) is a 170-kDa plasma membrane protein that confers multidrug resistance to otherwise sensitive cells. A mutation in Pgp, G185-->V, originally identified as a spontaneous mutation, was shown previously to alter the drug resistance profiles in cell lines that are stably transfected with the mutant MDR1 cDNA and selected with cytotoxic agents. To understand the mechanism by which the V185 mutation leads to an altered drug resistance profile, we used a transient expression system that eliminates the need for drug selection to attain high expression levels and allows for the rapid characterization of many aspects of Pgp function and biosynthesis. The mutant and wild-type proteins were expressed at similar levels after 24-48 h in human osteosarcoma (HOS) cells by infection with a recombinant vaccinia virus encoding T7 RNA polymerase and simultaneous transfection with a plasmid containing MDR1 cDNA controlled by the T7 promoter. For both mutant and wild-type proteins, photolabeling with [3H]azidopine and [125I]iodoarylazidoprazosin, drug-stimulated ATPase activity, efflux of rhodamine 123, and accumulation of radiolabeled vinblastine and colchicine were evaluated. In crude membrane preparations from HOS cells, a higher level of basal Pgp-ATPase activity was observed for the V185 variant than for the wild-type, suggesting partial uncoupling of drug-dependent ATP hydrolysis by the mutant. Several compounds, including verapamil, nicardipine, tetraphenylphosphonium, and prazosin, stimulated ATPase activities of both the wild-type and mutant similarly, whereas cyclosporin A inhibited the ATPase activity of the mutant more efficiently than that of the wild-type. This latter observation explains the enhanced potency of cyclosporin A as an inhibitor of the mutant Pgp. No differences were seen in verapamil-inhibited rhodamine 123 efflux, but the rate of accumulation was slower for colchicine and faster for vinblastine in cells expressing the mutant protein, as compared with those expressing wild-type Pgp. We conclude that the G185-->V mutation confers pleiotropic alterations on Pgp, including an altered basal ATPase activity and altered interaction with substrates and the inhibitor cyclosporin A.  相似文献   

4.
Broad substrate specificity of human P-glycoprotein (ABCB1) is an essential feature of multidrug resistance. Transport substrates of P-glycoprotein are mostly hydrophobic and many of them have net positive charge. These compounds partition into the membrane. Utilizing the energy of ATP hydrolysis, P-glycoprotein is thought to take up substrates from the cytoplasmic leaflet of the plasma membrane and to transport them to the outside of the cell. We examined this model by molecular dynamics simulation of the lipid bilayer, in the presence of transport substrates together with an atomic resolution structural model of P-glycoprotein. Taken together with previous electron paramagnetic resonance studies, the results suggest that most transported drugs are concentrated near the surface zone of the inner leaflet of the plasma membrane. Here the drugs can easily diffuse laterally into the drug-binding site of P-glycoprotein through an open cleft. It was concluded that the initial high-affinity drug-binding site was located in the interfacial surface area of P-glycoprotein in contact with the membrane interface. Based on these results and our recent kinetic studies, a “solvation exchange” drug transport mechanism of P-glycoprotein is discussed. A molecular basis for the improved colchicine transport efficiency by the much-studied colchicine-resistance G185V mutant human P-glycoprotein is also provided.  相似文献   

5.
6.
Qu Q  Chu JW  Sharom FJ 《Biochemistry》2003,42(5):1345-1353
The P-glycoprotein multidrug transporter is a plasma membrane efflux pump for hydrophobic natural products, drugs, and peptides, driven by ATP hydrolysis. Determination of the details of the catalytic cycle of P-glycoprotein is critical if we are to understand the mechanism of drug transport and design ways to inhibit it. It has been proposed that the vanadate-trapped transition state of P-glycoprotein (Pgp x ADP x V(i) x M(2+), where M(2+) is a divalent metal ion) has a very low affinity for drugs compared to resting state protein, thus leading to binding of substrate on the cytoplasmic side of the membrane and release of substrate to the extracellular medium (or the extracellular membrane leaflet). We have used several different fluorescence spectroscopic approaches to show that isolated purified P-glycoprotein, when trapped in a stable transition state with vanadate and either Co(2+)or Mg(2+), binds drugs with high affinity. For vinblastine, colchicine, rhodamine 123, and doxorubicin, the affinity of the vanadate-trapped transition state for drugs was only very slightly (less than 2-fold) lower than the binding affinity of resting state Pgp, whereas for the modulators cyclosporin A and verapamil and the substrate Hoechst 33342, the binding affinity was very similar for the two states. The drug binding affinity of the ADP-bound form of the transporter was also comparable to that of the unoccupied transporter. These results suggest that release of drug from the transporter during the catalytic cycle precedes formation of the transition state.  相似文献   

7.
The P-glycoprotein of themdr 1 gene is responsible for the phenomenon of multidrug resistance in human cells. The presumed drug-binding site of the wild-type P-glycoprotein contains a glycine at position 185. A mutant P-glycoprotein which contains valine at this position causes cells to retain resistance to colchichine, but to lose cross-resistance to other drugs such as the chemotherapeutic agents vinblastine and Adriamycin. This has been hypothesized to be due to a conformational change in the protein induced by the amino acid substitution. Using conformational energy analysis, we have determined the allowed three-dimensional structures for the wild-type and mutant proteins in the region of position 185. The results indicate that the wild-type protein adopts a unique left-handed conformation at position 185 which is energetically unfavorable for the protein withl-amino acids (including valine) at this position. This conformational change induced by amino acid substitutions for Gly 185 could explain the differences in binding to the P-glycoprotein of various drugs and, hence, the differences in drug resistance exhibited by various cell lines expressing these proteins.  相似文献   

8.
The P-glycoprotein of themdr 1 gene is responsible for the phenomenon of multidrug resistance in human cells. The presumed drug-binding site of the wild-type P-glycoprotein contains a glycine at position 185. A mutant P-glycoprotein which contains valine at this position causes cells to retain resistance to colchichine, but to lose cross-resistance to other drugs such as the chemotherapeutic agents vinblastine and Adriamycin. This has been hypothesized to be due to a conformational change in the protein induced by the amino acid substitution. Using conformational energy analysis, we have determined the allowed three-dimensional structures for the wild-type and mutant proteins in the region of position 185. The results indicate that the wild-type protein adopts a unique left-handed conformation at position 185 which is energetically unfavorable for the protein withl-amino acids (including valine) at this position. This conformational change induced by amino acid substitutions for Gly 185 could explain the differences in binding to the P-glycoprotein of various drugs and, hence, the differences in drug resistance exhibited by various cell lines expressing these proteins.  相似文献   

9.
We isolated a full-length MDR1 cDNA from human adrenal where P-glycoprotein is expressed at high level. The deduced amino acid sequence shows two amino acid differences from the sequence of P-glycoprotein obtained from colchicine-selected multidrug resistant cultured cells. The amino acid substitution Gly----Val at codon 185 in P-glycoprotein from colchicine resistant cells occurred during selection of cells in colchicine. As previously reported, cells transfected with the MDR1 cDNA carrying Val185 acquire increased resistance to colchicine compared to other drugs. The other amino acid substitution Ser----Ala at codon 893 probably reflects genetic polymorphism. The MDR1 gene, the major member of the P-glycoprotein gene family expressed in human adrenal, is sufficient to confer multidrug-resistance on culture cells.  相似文献   

10.
The drug-binding domain of the human multidrug resistance P-glycoprotein (P-gp) probably consists of residues from multiple transmembrane (TM) segments. In this study, we tested whether the amino acids in TM11 participate in binding drug substrates. Each residue in TM11 was initially altered by site-directed mutagenesis and assayed for drug-stimulated ATPase activity in the presence of verapamil, vinblastine, or colchicine. Mutants G939V, F942A, T945A, Q946A, A947L, Y953A, A954L, and G955V had altered drug-stimulated ATPase activities. Direct evidence for binding of drug substrate was then determined by cysteine-scanning mutagenesis of the residues in TM11 and inhibition of drug-stimulated ATPase activity by dibromobimane, a thiol-reactive substrate. Dibromobimane inhibited the drug-stimulated ATPase activities of two mutants, F942C and T945C, by more than 75%. These results suggest that residues Phe(942) and Thr(945) in TM11, together with residues previously identified in TM6 (Leu(339) and Ala(342)) and TM12 (Leu(975), Val(982), and Ala(985)) (Loo, T. W., and Clarke, D. M. (1997) J. Biol. Chem. 272, 31945-31948) form part of the drug-binding domain of P-gp.  相似文献   

11.
The Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI) is a lysosomal storage disease with autosomal recessive inheritance caused by deficiency of the enzyme arylsulfatase B. Severe, intermediate, and mild forms of the disease have been described. The molecular correlate of the clinical heterogeneity is not known at present. To identify the molecular defect in a patient with the intermediate form of the disease, arylsulfatase B mRNA from his fibroblasts was reverse-transcribed, amplified by the polymerase chain reaction, and subcloned. Three point mutations were detected by DNA sequence analysis, two of which, a silent A to G transition at nucleotide 1191 and a G to A transition at nucleotide 1126 resulting in a methionine for valine 376 substitution, were polymorphisms. A G to T transversion at nucleotide 410 causing a valine for glycine 137 substitution (G137V) was identified as the mutation underlying the Maroteaux-Lamy phenotype of the patient, who was homozygous for the allele. The kinetic parameters of the mutant arylsulfatase B enzyme toward a radiolabeled trisaccharide substrate were normal excluding an alteration of the active site. The G137V mutation did not affect the synthesis but severely reduced the stability of the arylsulfatase B precursor. While the wild type precursor is converted by limited proteolysis in late endosomes or lysosomes to a mature form, the majority of the mutant precursor was degraded presumably in a compartment proximal to the trans Golgi network and only a small amount escaped to the lysosomes accounting for the low residual enzyme activity in fibroblasts of a patient with the juvenile form of the disease.  相似文献   

12.
P-glycoprotein (ABCB1) prevents absorption (e.g., blood-brain barrier) or enhances excretion (e.g., kidney) by moving substrates from the cytosolic to the extracellular membrane leaflet at the expense of ATP hydrolysis. It translocates various drugs and functions in membranes exhibiting different lateral packing densities. To gain more functional insight, we measured the temperature dependence of the P-glycoprotein ATPase activity in NIH-MDR1-G185 cell membranes in the absence and presence of three drugs (promazine, verapamil, and PSC833), exhibiting significantly different transporter affinities. Activation enthalpies (Delta H(++)) and entropies ( TDelta S(++)) were derived from Eyring plots. In the absence of drugs, the activation enthalpy and the free energy of activation for P-glycoprotein ATPase activity was determined as Delta H(++) = 92.6 +/- 4.2 kJ/mol and Delta G(++) = 73.1 +/- 7.2 kJ/mol, respectively. Increasing the drug concentration reduced the activation enthalpy, whereby the drug with the highest transporter affinity had the strongest effect (DeltaDelta H(++) = -21%). The free energy of activation decreased for activating (DeltaDelta G(++) = approximately -3.8%) and increased for inhibitory compounds (DeltaDelta G(++) = approximately +0.7%). The drug-specific changes of the free energy of activation are thus barely above thermal energy. A comparison with literature data revealed that a decrease of the lateral membrane packing density reduces the enthalpic and the entropic contribution to the free energy of activation. Although the P-glycoprotein ATPase activity increases only slightly with decreasing lateral membrane packing density, the mode of action changes from strongly entropy-driven at high, to essentially enthalpy-driven at low packing densities. This suggests that the transporter and the membrane form a functional entity.  相似文献   

13.
In vitro studies of multidrug-resistant cell lines have shown that a membrane protein, the P-glycoprotein, is responsible for resistance to a wide range of structurally and functionally dissimilar anti-cancer drugs. The amino-acid sequence of P-glycoprotein (Pgp) indicates two consensus sequences for ATP binding and the purified protein has been reported to possess a low level of ATPase activity. As part of our goal to further characterize the ATPase activity of P-glycoprotein, we have developed a procedure for rapid partial purification of the protein in a highly active form. Plasma membrane vesicles from multidrug-resistant CHRC5 Chinese hamster ovary cells were subjected to a two-step procedure involving selective extraction with different concentrations of the zwitterionic detergent CHAPS. The resulting extract was enriched in P-glycoprotein (around 30% pure) and displayed an ATPase activity (specific activity 543 nmol mg-1 min-1) that was not found in a similar preparation from drug-sensitive cells. The ATPase specific activity was over 10-fold higher than that previously reported for immunoprecipitated Pgp and 280-fold higher than that of immunoaffinity-purified Pgp. This ATPase activity could be distinguished from that of other ion-motive ATPases and membrane-associated phosphatases and is, thus, proposed to be directly attributable to P-glycoprotein. Optimal P-glycoprotein ATPase activity required Mg2+ at an ATP: Mg2+ molar ratio of 0.75:1 and the apparent Km for ATP was 0.88 mM. P-Glycoprotein ATPase could be completely inhibited by vanadate and by the sulfhydryl-modifying reagents N-ethylmaleimide, HgCl2 and p-chloromercuribenzenesulfonate. Certain drugs and chemosensitizers, including colchicine, progesterone, nifedipine, verapamil and trifluoperazine, produced up to 50% activation of P-glycoprotein ATPase activity.  相似文献   

14.
ATPase activity associated with P-glycoprotein (Pgp) is characterized by three drug-dependent phases: basal (no drug), drug-activated, and drug-inhibited. To understand the communication between drug-binding sites and ATP hydrolytic sites, we performed steady-state thermodynamic analyses of ATP hydrolysis in the presence and absence of transport substrates. We used purified human Pgp (ABCB1, MDR1) expressed in Saccharomyces cerevisiae (Figler, R. A., Omote, H., Nakamoto, R. K., and Al-Shawi, M. K. (2000) Arch. Biochem. Biophys. 376, 34-46) as well as Chinese hamster Pgp (PGP1). Between 23 and 35 degrees C, we obtained linear Arrhenius relationships for the turnover rate of hydrolysis of saturating MgATP in the presence of saturating drug concentrations (kcat), from which we calculated the intrinsic enthalpic, entropic, and free energy terms for the rate-limiting transition states. Linearity of the Arrhenius plots indicated that the same rate-limiting step was being measured over the temperature range employed. Using linear free energy analysis, two distinct transition states were found: one associated with uncoupled basal activity and the other with coupled drug transport activity. We concluded that basal ATPase activity associated with Pgp is not a consequence of transport of an endogenous lipid or other endogenous substrates. Rather, it is an intrinsic mechanistic property of the enzyme. We also found that rapidly transported substrates bound tighter to the transition state and required fewer conformational alterations by the enzyme to achieve the coupling transition state. The overall rate-limiting step of Pgp during transport is a carrier reorientation step. Furthermore, Pgp is optimized to transport drugs out of cells at high rates at the expense of coupling efficiency. The drug inhibition phase was associated with low affinity drug-binding sites. These results are consistent with an expanded version of the alternating catalytic site drug transport model (Senior, A. E., Al-Shawi, M. K., and Urbatsch, I. L. (1995) FEBS Lett. 377, 285-289). A new kinetic model of drug transport is presented.  相似文献   

15.
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) actively extrudes a broad range of potentially cytotoxic compounds out of the cell. Key steps in understanding the transport process are binding of drug substrates in the transmembrane domains, initiation of ATPase activity, and subsequent drug efflux. We used cysteine-scanning mutagenesis of the transmembrane segment residues and reaction with the thiol-reactive drug substrate analog of rhodamine, methane-thiosulfonate-rhodamine (MTS-rhodamine), to test whether P-gp could be trapped in an activated state with high levels of ATPase activity. The presence of such an activated P-gp could be used to further investigate P-gp-drug substrate interactions. Single cysteine mutants (149) were treated with MTS-rhodamine, and ATPase activities were determined after removal of unreacted MTS-rhodamine. One mutant, F343C(TM6), showed a 5.8-fold increase in activity after reaction with MTS-rhodamine. Pre-treatment of mutant F343C with rhodamine B protected it from activation by MTS-rhodamine, indicating that residue Cys-343 contributes to the rhodamine-binding site. The ATPase activity of MTS-rhodamine-treated mutant F343C, however, was not stimulated further by colchicine or calcein-AM. By contrast, verapamil and Hoechst 33342 stimulated and inhibited, respectively, the ATPase activity of the MTS-rhodamine-treated mutant F343C. These results indicate that the MTS-rhodamine binding site overlaps that of colchicine and calcein-AM but not that of verapamil and Hoechst 33342 within the common drug-binding pocket.  相似文献   

16.
Drug-resistant tumor cells actively extrude a variety of chemotherapeutic agents by the action of the multi-drug resistance (MDR1) gene product, the plasma membrane P-glycoprotein. In this report we show that the expression of the human MDR1 gene in cultured Sf9 insect cells via a baculovirus vector generates a high activity vanadate-sensitive membrane ATPase. This ATPase is markedly stimulated by drugs known to interact with the P-glycoprotein, such as vinblastine and verapamil, and the ability of the various drugs to stimulate the ATPase corresponds to their previously observed affinity for this transporter. The drug-stimulated ATPase is not present in uninfected or mock-infected Sf9 cells, and its appearance correlates with the appearance of the MDR1 gene product detected with a monoclonal anti-MDR protein antibody and by labeling with 8-azido-ATP. The drug-induced ATPase requires magnesium ions, does not utilize ADP or AMP as substrates, exhibits a half-maximal activation at about 0.5 mM MgATP, and its maximal activity (about 3-5 mumol/mg MDR protein/min) approaches that of the well characterized ion transport ATPases. These results provide the first direct demonstration of a high capacity drug-stimulated ATPase activity of the human multidrug resistance protein and offer a new and simple assay for the investigation of functional interactions of various drugs with this clinically important enzyme.  相似文献   

17.
A new mutation in human F(1)F(0) ATPase6, T9176G, which changes Leu 217 to an Arg, has been described in two siblings with Leigh syndrome [Carrozzo et al. (2000) Neurology, in press]. This mutation was modeled in Escherichia coli by changing Leu 259 (the equivalent residue) to Arg and the properties of the altered ECF(1)F(0) were compared to those of previously characterized ATPase6 mutants also modeled in the E. coli enzyme. The L259R change produced a fully assembled ECF(1)F(0) which had no significant ATP hydrolysis, ATP synthesis or proton pumping functions. This is very different from previously described human ATPase6 mutations. The presence of Arg at position 259 in subunit a did not make membranes permeable to protons. We conclude that the mutation inhibits functioning by blocking the rotary motor action of the enzyme.  相似文献   

18.
P-glycoprotein is a 130-180-kDa integral membrane protein that is overproduced in multidrug-resistant cells. The protein appears to act as an energy-dependent drug efflux pump that has broad specificity for structurally diverse hydrophobic antitumor drugs. Many agents, such as the calcium channel blocker verapamil, reverse multidrug resistance and also interact with P-glycoprotein. The goal of this work was to determine if a common binding site participates in the transport of antitumor drugs and/or the reversal of drug resistance. This was done by comparing the peptide maps of P-glycoprotein (encoded by mdr1b) after it was labeled with a photoactive calcium channel blocker, [3H]azidopine, and a newly identified photoaffinity analog for P-glycoprotein 2-[4-(4-azido-3-[125I]iodobenzoyl) piperazin-1-yl]-4-amino-6,7-dimethoxyquinazoline [( 125I]iodoaryl azidoprazosin). [125I] Iodoaryl azidoprazosin, which classically has been used to identify the alpha 1-adrenergic receptor, bound to P-glycoprotein and was preferentially competed by vinblastine greater than actinomycin D greater than doxorubicin greater than colchicine. Peptide maps derived from P-glycoprotein labeled with [3H]azidopine or [125I]iodoaryl azidoprazosin were identical. After maximal digestion under conditions for Cleveland mapping, a single major 6-kDa fragment was obtained after digestion with V8 protease, whereas two major fragments, 6.5 and 5.5 kDa, were detected after digestion with chymotrypsin. The 6.0-kDa V8 fragment and the 6.5-kDa chymotrypsin fragment were both found when P-glycoprotein encoded by mdr1a and mdr1b was compared. Despite its specific interaction with P-glycoprotein, neither iodoaryl azidoprazosin nor prazosin markedly reversed resistance compared with verapamil or azidopine. Further, multidrug-resistant cells were 900-fold resistant to vinblastine but only 5-fold resistant to prazosin. These data demonstrate that structurally diverse reversal and/or antitumor agents are likely to have differential affinity for a small common domain of P-glycoprotein.  相似文献   

19.
Manna SK  Mazumdar S 《Biochemistry》2006,45(42):12715-12722
The role of the threonine 101 residue that resides close to the heme propionic acid side chain of cytochrome P450cam on the conformational properties of the active site of the enzyme has been investigated by circular dichroism (CD) spectroscopy. Site-specific mutation of the threonine by valine has been carried out that does not affect the size of the residue but significantly alters the hydropathy index. The T101V mutant of cytochrome P450cam showed distinct differences in the CD spectra near the heme region, indicating a subtle effect of the mutation on the properties of the heme active site. Thermal stabilities of the mutant and wild-type enzyme have been studied by temperature dependence of the ellipticity (intensity of the CD band) in the far-UV region for the secondary structure and at different wavelengths in the visible region that arise from the heme moiety for the tertiary structure around the prosthetic group. The thermal unfolding data from variations of the CD intensity at different wavelengths were analyzed using a generalized multistep unfolding model, and two distinct equilibrium intermediate conformational states of the enzyme were identified. The mutation of the T101 residue by valine was found to decrease the thermal stability of both the intermediates in the presence of the substrate. On the other hand, this mutation had no apparent effect on the thermal stability of the enzyme in the absence of the substrate. These results suggested that the threonine residue stabilizes the protein cavity around the heme center in the case of the substrate-bound species, possibly by hydrogen bonding with one of the propionate side chains of the heme moiety. Such hydrogen bonding of the heme propionate with threonine is absent in the substrate-free form of the enzyme.  相似文献   

20.
1. When mitochondrial ATPase, which has been modified on a single tyrosine residue by 4-chloro-7-nitrobenzofurazan, is incubated at pH 9.0, the 7-nitrobenzofurazan group undergoes an intramolecular transfer to a nitrogen residue. The rate of this transfer is sensitive to the binding of adenine nucleotides to the enzyme. The resulting N-nitrobenzofurazan ATPase has little or no activity. 2. The fluorescence of the N-nitrobenzofurazan group in the modified ATPase is quenched on binding of ADP. 3. Electrophoresis of the modified enzyme in sodium dodecyl sulphate on a 10% polyacrylamide gel shows that the fluorescence of the N-nitrobenzofurazan chromophore is exclusively in the beta subunit. 4. The rate of transfer of the nitrobenzofurazan group from tyrosyl oxygen to nitrogen on the enzyme is compared with the rate of transfer between model compounds. 5. The interaction of the N-nitrobenzofurazan ATPase with aurovertin is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号