首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impact of initial density of cowpea aphid Aphis craccivora Koch (Aphididae) at infestation on the growth and yield of aphid-susceptible cowpea cultivar ICV-1 and aphid-resistant cultivar ICV-12, was investigated. Plants at the seedling, flowering and podding stages of development were infested with five aphid densities consisting of 0, 2, 5, 10 and. 20 aphids per plant and maintained for 22 days. Extended leaf heights of plants and aphid counts were recorded at 7, 12, 17 and 22 days after infestation. Two crop growth parameters (biomass duration and leaf area duration), and two plant yield parameters (number of pods per plant and number of seeds per pod) were recorded. Due to the occurrence of parthenogenesis and changes in population dynamics during infestations, aphid densities were converted into cumulative cowpea aphid-days, to facilitate data analyses and interpretation. ANOVA indicated that there was significant (P=s 0.05) difference in aphid-day accumulations between the two cultivars when infested at the seedling stage. Accumulations on cv. ICV-1 were greater than on cv. ICV-12. However, no such differences between the cultivars were detected when plants were infested at flowering and podding stages. Therefore, the seedling stage was used for comparisons of the impact of cowpea aphid-days on the growth and yield parameters of the two cultivars. At the 95% confidence intervals, ICV-12 plants were consistently taller than ICV-1 plants. Infested ICV-1 seedlings showed stunting and other growth deformities which were not observed on ICV-12 plants. Regression analyses revealed substantial reductions in the growth and yield parameters of ICV-1 relative to ICV-12. Overall, cowpea aphid-days provided a convenient and reliable method for studying the aphid population dynamics and the subsequent impact on plant growth and yield performance.  相似文献   

2.
Field-caged populations of the rose-grain aphid Metopolophium dirhodum were established on winter wheat (cv. Bounty) during the summer of 1981. An early wheat growth stage (G.s.) (40 to 69) and a late (G.s. 65 to 73) aphid infestation treatment were compared; only the early infestation resulted in a significant reduction in grain weight (15%), although the infestation sizes were similar in the two treatments. Baking quality of the flour was unaffected by both treatments. Caged populations were also established on winter wheat (cv. Avalon) in 1982 but, in spite of aphid numbers as large as in 1981, no significant yield loss was recorded. An infection of take-all fungus Gaeumannomyces graminis developed during the course of this experiment and may have masked the effect of the aphids.  相似文献   

3.
Damaging effects of either black bean aphid (Aphis fabae), broad bean rust (Uromyces viciae-fabae), or the combination of both were investigated on a susceptible (cv. Diana) and an aphid resistant (cv. Bolero) cultivar of Vicia faba. When compared with rust, aphids caused greater reductions of root dry weight, shoot dry weight, leaf area, and mean relative growth rate. The mean unit leaf rate was also reduced whereas the leaf area ratio was not affected. The damage caused per aphid was highest on the susceptible cultivar. Rust induced damage did not differ between the cultivars. Concomitant infestation with both pests only resulted in additive damage. The population development of aphids was delayed on partially resistant plants. High temperature and rust infection reduced the total number of aphids the plants were able to support but not the level of resistance. Thus the specific damaging effect per aphid was increased.  相似文献   

4.
This study was initiated to investigate effects of damage by 0, 5 and 10 aphids/plant on the physiology of faba bean plants throughout different feeding periods and at two plant development stages. Immediately following removal of Aphis fabae, measurements showed 84–229% increase in transpiration rate. These changes were proportional to the number of aphids and infestation duration. Injury by A. fabae caused the stomatal conductance to be much higher in the leaves of infested plants. Leaf stomatal conductance of the infested plants increased significantly by 51–224% depending on initial aphid densities and feeding intervals. This increase was proportional to the infestation level for each date. Length of infestation period and plant growth stage seemed to have no clear effect on stomatal apertures. Aphid feeding caused a damage of about 7–33% of crude protein levels in the leaf tissue. This reduction increased with increasing infestation levels and time, except for 28‐day‐old plants on 28 days. The physiological effects of aphid feeding on water vapour and chemical composition of damaged leaves are particularly serious when the population is high.  相似文献   

5.
The physiological response of winter wheat to reductions in plant density   总被引:4,自引:0,他引:4  
The effects of reducing the plant density of winter wheat (cv. Haven) on canopy formation, radiation absorption and dry matter production and partitioning were investigated in field experiments in 1996/97 and 1997/98. Crop densities established ranged from 19 to 338 plants m?2. Grain yield was maintained with large reductions in plant density. At low plant densities the relative growth rate of the crop increased allowing a maintenance of crop dry matter production. An 18 fold reduction in plant density led only to a six fold reduction in green area index at the beginning of stem extension and by anthesis the difference was less than two fold. Crops grown at low plant densities increased green area per plant through increased duration of tiller production, green area per shoot and shoot survival. Main stem leaf number, phyllochron and tiller production rate were not significantly affected by plant density. Radiation use efficiency was greater at the low plant densities. We propose that better radiation distribution through the canopy and increased canopy nitrogen ratio were the causative mechanisms for this increase in RUE. As a result of increased green area per shoot and a decrease in ear production, more radiation was absorbed per shoot at the low plant densities, allowing an increase in grain number per ear from 32 to 48.  相似文献   

6.
Field studies were made in 1992 and 1993 to examine the yield components of pea inoculated with Mycosphaerella pinodes and those of healthy pea (sprayed with a mixture of flutriafol + chlorothalonil), in a split-plot design with the cv. Solara sown at different plant densities. Ascochyta blight was severe on leaves and on internodes of the basal part of the plants; pods had few lesions. The number and length of stems per plant were the same for diseased and healthy plants. The number of reproductive nodes and pods per stem were affected by disease only in 1993. In 1992 and 1993 respectively, disease caused reductions in the number of seeds per stem of 18% and 25%, and in seed size of 13.5% and 16.7%, compared with healthy plants. The harvest index and total biomass were lower in diseased than in healthy plants and seed yield was reduced by 40% in diseased plots. These results show a high relationship between the disease parameters (disease mean on stipules/nodes 8–18/ and on internodes/nodes 5–15/, percentages of stipules or internodes with a disease score 4, and percentage of stems encircled by lesions), plant density and yield reduction.  相似文献   

7.
The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), reproduces parthenogenetically in North America and must survive year-round on host plants, including in late summer when small grains are not in cultivation. During this time, cool-season perennial wheatgrasses (Poaceae: Triticeae) contribute substantially to aphid survival, crested wheatgrass (Agropyron spp.) particularly. In greenhouse studies, the number of aphids per plant was measured after four infestation periods on unvernalized and vernalized wheatgrasses. Before placement on these test plant species, aphids were reared either on winter wheat or on the grass host species on which aphid progeny were counted. On vernalized plants, aphids reared on wheat resulted in more aphids per test plant than when the aphids were reared on wheatgrasses, but on unvernalized plants the number of aphids per test plant did not differ significantly regardless of rearing host. Aphids on crested wheatgrass were similar in number to the other grasses when plants were unvernalized. However, when plants were vernalized, crested wheatgrass supported significantly more aphids than some of the other hosts. Aphid numbers increased on all test species as infestation period lengthened, and plant growth was largely unaffected by aphid feeding. These results suggest if sufficient moisture is available during summer when small grains are not in cultivation, all host species observed are capable of sustaining aphids. Crested wheatgrass is an abundant and important host of the Russian wheat aphid in its northern range of the western United States, but other less prevalent wheatgrasses also may contribute to aphid survival during late summer when small grains are not in cultivation.  相似文献   

8.
Composition, dominance and change in population density of species flying over and feeding on winter wheat fields was studied between 1982 and 1998 at Mosonmagyaróvár. There were 29 aphid species among flying insects. The ones imposing risk to winter wheat were as follows: Diuraphis noxia Kurdj., Metopolophium dirhodum Walk., Rho‐palosiphum padi L., Schizaphis graminum Rond., Sitobion avenae Fabr. Number of flying individuals changed year by year, depending principally on climatic factors (temperature, relative humidity, and rainfall). Flight was continuous from late April to harvest. In the average of 17 years flight peak was observed in June.

Establishment of the firsts alate individuals of aphids with holocyclic development can be expected from the second decade of April. As a result of the continuous reproduction, the peak in number of individuals was observed in the second decade of June. During the six years between 1993 and 1998 this value was 17.18 aphids/ plant. Every year there were deviations from the average data, e.g., in 1994 aphid number per plant was 33.61. These pests appeared on the ears in the first decade of June, their number was continuously increasing due to drying of leaves.

During the six years when detailed data were recorded, Rh. padi L. was the dominant species three times (1994: 70.4%; 1995: 82.6%; 1996: 87.9%), M. dirhodum Walk. took this role two times (1993: 67.1%; 1997: 84.8%) and S. avenae Fabr. only once (1998: 53%).

Considering seventeen years’ data, it is necessary to produce resistant varieties and/or seed dressing, or insecticide treatment to control the first alates.  相似文献   

9.
[目的] 探讨不同生育期和不同种植方式的茼蒿对蚕豆蚜虫的诱集作用,为利用茼蒿控制蚕豆蚜虫提供理论依据。[方法] 在蚕豆田四周种植不同生育期(幼苗期、现蕾期、开花期)和不同行数(1行、2行)的茼蒿,观察不同处理的蚕豆田有蚜株率和蚜害等级,各处理设在互不干扰的小区内进行。[结果] 蚕豆四周种植不同生育期茼蒿后,蚕豆上有蚜株率和蚜害等级比例存在显著差异,且与茼蒿的生育期有明显的相关性,各处理有蚜株率从低到高分别为茼蒿开花期(28.33%) < 现蕾期(41.67%) < 幼苗期(55.00%),并均显著低于对照(63.33%);种植不同生育期茼蒿后,各处理蚕豆蚜害等级也不同,5级蚜害在种植开花期茼蒿处理后仅为5.00%,现蕾期为23.33%,幼苗期为33.33%,对照蚕豆上蚜害最高,达40.00%。分别种植1行(33.33%)和2行(23.33%)茼蒿后,最高有蚜株率均显著低于对照(66.67%),低蚜害等级比例明显增高,高蚜害比例明显下降,且种植2行的效果更佳。[结论] 开花期的茼蒿对蚕豆蚜虫诱集作用最强,种植2行开花期茼蒿可以有效降低蚕豆蚜虫为害。在蚕豆生产上,种植茼蒿可以作为蚕豆蚜虫生态防控的重要手段之一。  相似文献   

10.
A. fabae populations, started at the 3–4 leaf-stage of sugar beet in the glasshouse and peaking at 3000 individuals per plant, reduced leaf area by 64% at the 14 leaf-stage. The size of the heavily-infested leaves number 5 to 10 was reduced by 80% or more. The rate of leaf growth regained normal values after the aphid populations collapsed, but the infested plants did not make up for the decrease in leaf area production that had been incurred during the infestation. Total dry matter production over a period of 15 weeks was reduced by 47%. Honeydew had no effect on leaf size or dry matter production. Sugar beet plants in the field became infested with A. fabae at the 2–3, 4–5 and 6–8 leaf stages. Maximum populations of 800, 2100 and 2200 aphids per plant were recorded, respectively. The pertinent reductions in leaf area were 91%, 67% and 34% at the 10–12 leaf-stage and 79%, 65% and 14% at harvest while the total dry matter produced was reduced by 91%, 79% and 16%. Neighbouring plants of the early-infested sugar beet plants gained significantly higher weights than control plants. Honeydew had no effect on leaf area or dry matter production. The consequences of these results for our understanding of Aphis fabae injury in sugar beet and aphid control in the field are discussed.  相似文献   

11.
Field-caged and open-plot populations of the aphid Sitobion avenae on winter wheat (cv. Maris Widgeon) were sampled approximately twice-weekly in the summer of 1978. Cage populations began at growth stage 10.2 (Feekes scale) (Zadoks, G. S. 52); they were removed by spraying with pirimicarb at growth stages 10.54 (71), 11.1–11.2 (77) and 11.2–11.3 (85) respectively. All cage populations reduced mean weight per grain but the effect per aphid unit was lowest in the population of longest duration. Although the aphid index in the open plots was higher than that in the early cage treatment, yield was unaffected. Cage infestations affected the breadmaking quality of the grain: percentage flour extraction was reduced and there was an increase in colour, nicotinic acid content and thiamine (vitamin B1) content of the flour; percentage nitrogen in the flour was unaffected but there was a reduction in baking value and in the high molecular weight glutenin content; infestation also reduced α-amylase activity. Different aspects of grain quality did not change in parallel with one another or with yield changes and thus damage thresholds will vary according to the yield/quality measure under consideration.  相似文献   

12.
Plants can activate inducible defence mechanisms against pests, pathogens, or chemical elicitors, such as ozone, mediated by reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2). An unfavourable balance between ROS production and the plant antioxidant capacity seems to be responsible for the resulting susceptibility of the plant to insect attack. Arugula plants [Eruca sativa Mill. (Brassicaceae)] and green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), were used in this study to test the hypothesis that the growth of an aphid population depends on both plant and insect stress history. We investigated the impact of density and duration of a previous aphid infestation, and the time lag before re‐infestation, on aphid population growth. In a second experiment, we assessed the effect on aphid population growth of previous ozone exposure of arugula plants in open top chambers receiving a continuous O3 fumigation of 100–120 p.p.b., 90 min per day during 3 days. A third experiment was conducted to study the effect of aphid density during a previous infestation on the population growth on an uninfested host. Both previous herbivory and ozone changed the oxidative status of plant tissues and facilitated aphid population growth, which increased with the duration and density of a previous infestation by aphids. Colonization success also depended on the aphids' own history. Aphids coming from high‐density populations and/or longer infestation periods produced larger populations on an (initially) uninfested plant. Pest outbreaks in a polluted environment might be expected to be modulated by the hosts' spatial‐temporal heterogeneity related to the ozone exposure and previous herbivory.  相似文献   

13.
The restriction of aphid reestablishment onto plants by epigeal predators represents a critical component of integrated pest management. To further realize the potential that these predators might have in control programs, it is necessary to quantify such behavior as aphid falling rate to reveal the number of aphids that are available as potential prey. This study calculated the falling rate of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Sternorrhyncha: Aphididae), and tested whether this aphid more likely fell from wheat plants that differed between flat leaf architecture versus those with furled leaves. Specifically, the hypothesis was tested that a resistant wheat line (flat leaves) will have a higher aphid falling rate than a susceptible closely related line (furled leaves). The experiment was performed at Fort Collins and Akron, Colorado, USA, from May through July, 2008. Aphids were sampled from infested wheat rows to estimate aphid density, and sticky traps were used to capture falling aphids and to measure falling rate. Falling rates ranged from 0.7 to 69.5% in Fort Collins and from 1.4 to 59.5% in Akron. The falling rate of D. noxia was more influenced by plant growth stage than aphid densities, with the highest falling rate occurring after wheat senescence. Wheat plants with flat leaf architecture did not significantly increase aphid falling rate. Diuraphis noxia falls at a higher rate at lower aphid densities, which is when epigeal predators could have their greatest biological control impact.  相似文献   

14.
The preference‐performance hypothesis predicts that insect preference should correspond to host suitability for offspring development. We studied the pattern of within‐plant preference in the aphid Sipha flava and its consequences for offspring performance on the host‐plant Sorghum halepense, regarding the role of induced responses of plants to aphid feeding. The consequences of within‐plant preference on aphid population growth and host‐plant traits were also evaluated. Our results showed that winged and wingless aphids preferred to settle on mature rather than young leaves. In contrast, aphid individual growth rate was higher on young leaves when compared with mature leaves, suggesting that the outcome of this test rejected the preference‐performance hypothesis. However, the inclusion of the factor ‘previous aphid infestation’ changed the outcome from a maladaptive choice to a neutral one. Thus, individual growth rates of S. flava increased when aphids developed on leaves that had been previously infested. Interestingly, aphid growth rate on previously infested leaves did not differ between young and mature leaves. On the other hand, aphid population reproductive rate was higher and the percentage of winged aphids lower when infestation occurred on mature rather than young leaves. Aphid infestation reduced plant and shoot biomass, and increased leaf mortality. These negative effects on plant traits related to plant fitness were greater when aphid infestation occurred on young leaves. Likewise, whereas infestation on mature leaves did not cause a significant reduction in the number of flowering plants compared with control plants, aphid infestation on young leaves did reduce the number of plants at the flowering stage. Consequently, if both the reproductive rate of aphids in the mid‐term, and host‐plant fitness are taken into account, the results indicate that aphid preference for mature leaves may be an adaptive choice, thus supporting the preference‐performance hypothesis.  相似文献   

15.
Predators (mainly coccinellid adults and larvae and syrphid larvae), although few, were important in decreasing numbers of Aphis fabae on a small plot of field beans during the early stages of infestation in a year favourable to the aphid. At the same time, ants (Lasius niger L.), attending aphids on other plants on the same plot, effectively protected the aphids from predators for about 2 weeks, enabling the attended aphids to multiply faster than the unattended. When all aphid populations started to decline, predators became more numerous and accelerated the decline on both sets of plants. Bean plants without aphids yielded fifty-six seeds per plant; those with aphids but free from ants gave seventeen; and those with ant-attended aphids, eight seeds per plant. The damage and loss of yield was caused by the large aphid populations that developed when the pods were maturing, and not by the fewer aphids present when the plants were in flower. It appears that small, temporary infestations during flowering might increase the yield of field beans.  相似文献   

16.
Susceptible and resistance wheat cultivars, Triticum aestivum L, were presented to two biotypes of Russian wheat aphid, Diuraphis noxia (Mordvilko), in multiple choice tests to assay their relative acceptability as host plants. Both apterae (third and fourth instars) and alate adults were offered plants at the two-leaf stage in different cultivar combinations at 22±1℃ and 16:8 (L: D) hour photoperiod. Apterae were released from Petri dishes in the center of a circle of test plants, whereas alatae dispersed from a mature aphid colony to settle on plants arranged in rows. Both alatae and apterous nymphs of both biotypes readily colonized all cultivars tested:‘2137', ‘Akron',‘Ankor’,‘ Halt’ ,‘ Jagger’ ,‘ Prairie Red’ , ‘Stanton',‘TAM 107',‘TAM 110',‘Trego', ‘ Yuma', and ‘Yumar'. Fewer biotype I apterae responded (settled and fed) in the combination containing more resistant (Dn4- and Dny-expressing) cultivars, compared to the combinations that had fewer. The reverse was true for biotype 2 apterae; more aphids responded in the combination containing the largest number of Dn4 expressing cultivars. Differential colonization of cultivars was observed in only one combination, in which biotype 2 apterae colonized Akron and Yumar in larger numbers than they did Stanton and Yuma. A separate experiment confirmed that, 48 hours after infestation, more biotype 2 apterae abandoned plants of Yuma than plants of Yumar. This differential response was likely due to genetic differences between the two ' near isogenic' lines that include the lack of Dn4 expression in Yuma. Choice tests with alatae did not result in differential rates of cultivar colonization by either biotype in any combination tested. These results suggest that young wheat plants appear to lack any meaningful antixenosis toward D. noxia, even though the aphids appear to perceive, and sometimes respond to, certain differences in cultivar suitability.  相似文献   

17.
The influence of aphid, Aphis gossypii, feeding on photosynthesis and transpiration in cotton plants was investigated under greenhouse conditions. Four population densities of 0, 5, 10, and 25 aphids were used to infest individual cotton leaves. Gas exchange rates were determined for single attached cotton leaves after 9, 18, and 27 days of aphid infestation. Aphid feeding changed photosynthetic rates and transpiration rates. These changes were proportional to the number of aphids and the length of infestation period. Photosynthetic rates were significantly reduced in infested leaves with 25 aphids over 18 days, whereas significant reduction in photosynthetic rates was recorded within 27 days in infested leaves with 5, 10, and 25 aphids in comparison to their respective control. Initial population of 10 aphids increased significantly the transpiration rate of infested leaves over 9 and 27 days. Leaves of plants with 25 aphids had significantly greater transpiration rate than the control at all times.  相似文献   

18.
Delaying the sowing of irrigated field beans in the Sudan after October greatly lowered the yield of seed, and increased both infestation by aphids and the incidence of Sudanese broad bean mosaic virus (SBBMV). Yield per plant was positively correlated with number of pods, but negatively with percentage infection with SBBMV. In greenhouse conditions, SBBMV was readily acquired from diseased plants and inoculated to healthy plants in 5 min feeding periods by both Aphis craccivora and Acyrthosiphon sesbaniae.  相似文献   

19.
Phloem-sucking mustard aphid (Lipaphis erysimi) is a major pest of mustard (Brassica juncea). Pot experiment with randomised block design was conducted with five replicates of each of five cultivars (Alankar, Pusa Jai Kisan, Rohini, Sakha and Varuna) of the mustard for their degree of inherited resistance and/or susceptibility to the mustard aphid infestation. Forty-five days old (from date of sowing) pot-grown plants of all selected cultivars of mustard were exposed to 40 adult mustard aphids. The aphid-infested plants were kept in specially designed net houses of fine mesh to protect from predators and/or migration of aphids from one to other host. The aphid population and some growth attributes of the selected cultivars of mustard were recorded 15 and 30 days later (i.e. at 60 and 75 days after sowing). The aphid population multiplied more rapidly on Rohini than other four cultivars. Cultivar Alankar resisted most and supported to least number of aphid’s off-springs. Statistically analysed growth attributes (fresh plant mass, dry plant mass, protein, chlorophyll and carotenoid contents), resistance attribute (proline) and population demography of aphids revealed that some inherited characteristics of avoidance, antibiosis and repellence to herbivores helped cultivar Alankar to excel despite equal degree of aphid attacks as on other cultivars. Cultivar Rohini for the want of such resisting factors remained vulnerable to aphid herbivory. These two cultivars (Alankar and Rohini) form good research material for comparative studies on plant defences to herbivory and a tri- trophic resistance through volatile chemical signalling.  相似文献   

20.
Chlorophyll degradation is a complex phenomenon that often accompanies insect feeding damage to plants. Loss of chlorophyll can be initiated by several reactions, including oxidative bleaching, chlorophyllase activity, and Mg-dechelatase activity. Extracts from the Russian wheat aphid [Diuraphis noxia (Mordvilko)], the bird cherry-oat aphid [Rhopalosiphum padi (L.)], and aphid-infested and uninfested wheat plants were assayed in vitro for activities involved in chlorophyll degradation. Although the initial infestation was the same (10 apterous adults) for both aphid species, D. noxia weight was significantly higher than R. padi after feeding for 12 days. Consequently, D. noxia feeding caused greater fresh leaf weight reduction than R. padi feeding. Chlorophyll degradation assays showed no activity from either D. noxia or R. padi extracts. Plant extract assays showed a significant difference in Mg-dechelatase activity, while no difference was detected in either the chlorophyllase or oxidative bleaching pathways among the aphid-infested or uninfested plant extracts. Diuraphis noxia-infested leaf extracts showed a greater increase of Mg-dechelatase activity than either R. padi-infested or the uninfested plants. The findings suggest that leaf chlorosis elicited by D. noxia feeding is different from the chlorophyll degradation that occurs in natural plant senescence. Aphid-elicited chlorosis might be the result of a Mg-dechelatase-driven catabolism of chlorophyll in challenged wheat seedlings, however, the factor(s) from D. noxia that elicited the increase of Mg-dechelatase activity still remain to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号