首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 25K, 12K, and 8K proteins and coat protein (CP) of Potato virus X (PVX) are required for virus cell-to-cell movement. In this study, experiments were conducted to determine whether the PVX 25K protein moves cell to cell and to explore potential interactions between the PVX 25K, 12K, and 8K proteins and CP. The PVX 25K gene was fused to the green fluorescent protein (GFP) gene and inserted into plasmids adjacent to the cauliflower mosaic virus 35S promoter. These plasmids were introduced by biolistic bombardment to transgenic tobacco expressing the PVX 12K, 8K, and CP genes. The GFP:25K fused proteins moved cell to cell on nontransgenic tobacco and tobacco expressing either the 12K or 8K proteins. However, the GFP:25K proteins did not move on transgenic tobacco expressing the combined 12K/8K genes or the CP gene. Thus, movement of the PVX 25K protein through plasmodesmata may be regulated by interactions with other PVX proteins.  相似文献   

2.
3.
Cap-independent translation of the hepatitis C virus (HCV) genomic RNA is mediated by an internal ribosome entry site (IRES) within the 5′ untranslated region (5′UTR) of the virus RNA. To investigate the effects of alterations to the primary sequence of the 5′UTR on IRES activity, a series of HCV genotype 1b (HCV-1b) variant IRES elements was generated and cloned into a bicistronic reporter construct. Changes from the prototypic HCV-1b 5′UTR sequence were identified at various locations throughout the 5′UTR. The translation efficiencies of these IRES elements were examined by an in vivo transient expression assay in transfected BHK-21 cells and were found to range from 0.4 to 95.8% of the activity of the prototype HCV-1b IRES. Further mutational analysis of the three single-point mutants most severely defective in activity, whose mutations were all located in or near stem-loop IIIc, demonstrated that both the primary sequence and the maintenance of base pairing within this stem structure were critical for HCV IRES function. Complementation studies indicated that defective mutants containing either point mutations or major deletions within the IRES elements could not be complemented in trans by a wild-type IRES.  相似文献   

4.
Jellyfish green fluorescent protein as a reporter for virus infections   总被引:34,自引:5,他引:29  
The gene encoding green fluorescent protein (GFP) of Aequorea victoria was introduced into the expression cassette of a virus vector based on potato virus X (PVX). Host plants of PVX inoculated with PVX.GFP became systemically infected. Production of GFP in these plants was detected initially between 1 and 2 days postinoculation by the presence of regions on the inoculated leaf that fluoresced bright green under UV light. Subsequently, this green fluorescence was evident in systemically infected tissue. The fluorescence could be detected by several methods. The simplest of these was by looking at the UV-illuminated plants in a darkened room. The PVX.GFP-infected tissue has been analysed either by epifluorescence or confocal laser scanning microscopy. These microscopical methods allow the presence of the virus to be localized to individual infected cells. It was also possible to detect the green fluorescence by spectroscopy or by electrophoresis of extracts from infected plants. To illustrate the potential application of this reporter gene in virological studies a derivative of PVX.GFP was constructed in which the coat protein gene of PVX was replaced by GFP. Confocal laser scanning microscopy of the inoculated tissue showed that the virus was restricted to the inoculated cells thereby confirming earlier speculation that the PVX coat protein is essential for cell-to-cell movement. It is likely that GFP will be useful as a reporter gene in transgenic plants as well as in virus-infected tissue.  相似文献   

5.
Potato virus X (PVX) requires three proteins, p25, p12, and p8, encoded by the triple gene block plus the coat protein (CP) for cell-to-cell movement. When each of these proteins was co-expressed with a cytosolic green fluorescent protein (GFP) in the epidermal cells of Nicotiana benthamiana by the microprojectile bombardment-mediated gene delivery method, only p12 enhanced diffusion of co-expressed GFP, indicating an ability to alter plasmodesmal permeability. p25, p12, and CP, expressed transiently in the initially infected cells, transcomplemented the corresponding movement-defective mutants to spread through two or more cell boundaries. Thus, these proteins probably move from cell to cell with the genomic RNA. In contrast, p8 only functioned intracellularly and was not absolutely required for cell-to-cell movement. Since overexpression of p12 overcame the p8 deficiency, p8 appears to facilitate the functioning of p12, presumably by mediating its intracellular trafficking. Considering the likelihood that p12 and p8 are membrane proteins, it is suggested that intercellular as well as intracellular movement of PVX involves a membrane-mediated process.  相似文献   

6.
We previously established that lymphoid tumors could be induced in cats by intradermal injection of ecotropic feline leukemia virus (FeLV), subgroup A, plasmid DNA. In preparation for in vivo experiments to study the cell-to-cell pathway for the spread of the virus from the site of inoculation, the green fluorescent protein (GFP) transgene fused to an internal ribosome entry site (IRES) was inserted after the last nucleotide of the env gene in the ecotropic FeLV-A Rickard (FRA) provirus. The engineered plasmid was transfected into feline fibroblast cells for production of viruses and determination of GFP expression. The virions produced were highly infectious, and the infected cells could continue to mediate strong expression of GFP after long-term propagation in culture. Similar to parental virus, the transgene-containing ecotropic virus demonstrated recombinogenic activity with endogenous FeLV sequences in feline cells to produce polytropic recombinant FeLV subgroup B-like viruses which also contained the IRES-GFP transgene in the majority of recombinants. To date, the engineered virus has been propagated in cell culture for up to 8 months without diminished GFP expression. This is the first report of a replication-competent FeLV vector with high-level and stable expression of a transgene.  相似文献   

7.
Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP.  相似文献   

8.
Rice dwarf virus (RDV) is a member of the genus Phytoreovirus, which is composed of viruses with segmented double-stranded RNA genomes. Proteins that support the intercellular movement of these viruses in the host have not been identified. Microprojectile bombardment was used to determine which open reading frames (ORFs) support intercellular movement of a heterologous virus. A plasmid containing an infectious clone of Potato virus X (PVX) defective in cell-to-cell movement and expressing either beta-glucuronidase or green fluorescent protein (GFP) was used for cobombardment with plasmids containing ORFs from RDV gene segments S1 through S12 onto leaves of Nicotiana benthamiana. Cell-to-cell movement of the movement-defective PVX was restored by cobombardment with a plasmid containing S6. In the absence of S6, no other gene segment supported movement. Identical results were obtained with Nicotiana tabacum, a host that allows fewer viruses to infect and spread within its tissue. S6 supported the cell-to-cell movement of the movement-defective PVX in sink and source leaves of N. benthamiana. A mutant S6 lacking the translation start codon did not complement the cell-to-cell movement of the movement-defective PVX. An S6 protein product (Pns6)-enhanced GFP fusion was observed near or within cell walls of epidermal cells from N. tabacum. By immunocytochemistry, unfused Pns6 was localized to plasmodesmata in rice leaves infected with RDV. S6 thus encodes a protein with characteristics identical to those of other viral proteins required for the cell-to-cell movement of their genome and therefore is likely required for the cell-to-cell movement of RDV.  相似文献   

9.
Mutant tobacco plants deficient for class I beta-1,3-glucanase (GLU I) are decreased in their susceptibility to virus infection. This is correlated with delayed virus spread, a reduction in the size exclusion limit of plasmodesmata and increased cell-wall deposition of the beta-1,3-glucan callose. To further investigate a role of GLU I during cell-to-cell movement of virus infection, we inserted the GLU I coding sequence into TMV for overexpression in infected cells. Compared with the size of local lesions produced on plants infected with virus expressing either an enzymatically inactive GLU I or a frameshift mutant of the gene, the size of local lesions caused by infection with virus expressing active GLU I was consistently increased. Viruses expressing antisense GLU I constructs led to lesions of decreased size. Similar effects were obtained for virus spread using plants grown at 32 degrees C to block the hypersensitive response. Together, these results indicate that enzymatically active GLU I expressed in cells containing replicating virus can increase cell-to-cell movement of virus. This supports the view that GLU I induced locally during infection helps to promote cell-to-cell movement of virus by hydrolyzing callose. Moreover, our results provide the first direct evidence that a biological function of a plant beta-1,3-glucanase depends on its catalytic activity.  相似文献   

10.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA is known to interact with the 40S ribosomal subunit alone, in the absence of any additional initiation factors or Met-tRNAi. Previous work from this laboratory on the 80S and 48S ribosomal initiation complexes involving the HCV IRES showed that stem-loop III, the pseudoknot domain, and some coding sequence were protected from pancreatic RNase digestion. Stem-loop II is never protected by these complexes. Furthermore, there is no prior evidence reported showing extensive direct binding of stem-loop II to ribosomes or subunits. Using direct analysis of RNase-protected HCV IRES domains bound to 40S ribosomal subunits, we have determined that stem-loops II and III and the pseudoknot of the HCV IRES are involved in this initial binding step. The start AUG codon is only minimally protected. The HCV-40S subunit binary complex thus involves recognition and binding of stem-loop II, revealing its role in the first step of a multistep initiation process that may also involve rearrangement of the bound IRES RNA as it progresses.  相似文献   

11.
The role of the 5'-untranslated region (5'UTR) in the replication of enteroviruses has been studied by using a series of poliovirus type 3 (PV3) replicons containing the chloramphenicol acetyltransferase reporter gene in which the 5'UTR was replaced by the 5'UTR of either coxsackievirus B4 or human rhinovirus 14 or composite 5'UTRs derived from sequences of PV3, human rhinovirus 14, coxsackievirus B4, or encephalomyocarditis virus. The results indicate that efficient replication of an enterovirus genome requires a compatible interaction between the 5'-terminal cloverleaf structure and the coding and/or 3'-noncoding regions of the genome. A crucial determinant of this interaction is the stem-loop formed by nucleotides 46 to 81 (stem-loop d). The independence of the cloverleaf structure formed by the 5'-terminal 88 nucleotides and the ribosome landing pad or internal ribosome entry site (IRES) was investigated by constructing a 5'UTR composed of the PV3 cloverleaf and the IRES from encephalomyocarditis virus. Chloramphenicol acetyltransferase gene-containing replicons and viruses containing this recombinant 5'UTR showed levels of replication similar to those of the corresponding genomes containing the complete PV3 5'UTR, indicating that the cloverleaf and the IRES may be regarded as functionally independent and nonoverlapping elements.  相似文献   

12.
Cricket paralysis-like viruses have a dicistronic positive-strand RNA genome. These viruses produce capsid proteins through internal ribosome entry site (IRES)-mediated translation. The IRES element of one of these viruses, Plautia stall intestine virus (PSIV), forms a pseudoknot immediately upstream from the capsid coding sequence, and initiates translation from other than methionine. Previously, we estimated that the IRES element of PSIV consists of seven stem-loops using the program MFOLD; however, experimental evidence of the predicted structures was not shown, except for stem-loop VI, which was responsible for formation of the pseudoknot. To determine the whole structure of the PSIV-IRES element, we introduced compensatory mutations into the upstream MFOLD-predicted helical segments. Mutation analysis showed that stem-loop V exists as predicted, but stem-loop IV is shorter than predicted. The structure of stem-loop III is different from predicted, and stem-loops I and II are not necessary for IRES activity. In addition, we identified two new pseudoknots in the IRES element of PSIV. The complementary sequence segments that are responsible for formation of the two pseudoknots are also observed in cricket paralysis virus (CrPV) and CrPV-like viruses such as Drosophila C virus (DCV), Rhopalosiphum padi virus (RhPV), himetobi P virus (HiPV), Triatoma virus (TrV), and black queen-cell virus (BQCV), although each sequence is distinct in each virus. Considering the three pseudoknots, we constructed a tertiary structure model of the PSIV-IRES element. This structural model is applicable to other CrPV-like viruses, indicating that other CrPV-like viruses can also initiate translation from other than methionine.  相似文献   

13.
Movement-deficient potato virus X (PVX) mutants tagged with the green fluorescent protein were used to investigate the role of the coat protein (CP) and triple gene block (TGB) proteins in virus movement. Mutants lacking either a functional CP or TGB were restricted to single epidermal cells. Microinjection of dextran probes into cells infected with the mutants showed that an increase in the plasmodesmal size exclusion limit was dependent on one or more of the TGB proteins and was independent of CP. Fluorescently labeled CP that was injected into epidermal cells was confined to the injected cells, showing that the CP lacks an intrinsic transport function. In additional experiments, transgenic plants expressing the PVX CP were used as rootstocks and grafted with nontransformed scions. Inoculation of the PVX CP mutants to the transgenic rootstocks resulted in cell-to-cell and systemic movement within the transgenic tissue. Translocation of the CP mutants into sink leaves of the nontransgenic scions was also observed, but infection was restricted to cells close to major veins. These results indicate that the PVX CP is transported through the phloem, unloads into the vascular tissue, and subsequently is transported between cells during the course of infection. Evidence is presented that PVX uses a novel strategy for cell-to-cell movement involving the transport of filamentous virions through plasmodesmata.  相似文献   

14.
Pugachev KV  Tzeng WP  Frey TK 《Journal of virology》2000,74(22):10811-10815
Rubella virus (RUB) is a small plus-strand RNA virus classified in the Rubivirus genus of the family Togaviridae. Live, attenuated RUB vaccines have been successfully used in vaccination programs for over 25 years, making RUB an attractive vaccine vector. In this study, such a vector was constructed using a recently developed RUB infectious cDNA clone (Robo). Using a standard strategy employed to produce expression and vaccine vectors with other togaviruses, the subgenomic promoter was duplicated to produce a recombinant construct (termed dsRobo) that expressed reporter genes such as chloramphenicol acetyltransferase and green fluorescent protein (GFP) under control of the second subgenomic promoter. However, expression of the reporter genes, as exemplified by GFP expression by dsRobo/GFP virus, was unstable during passaging, apparently due to homologous recombination between the subgenomic promoters leading to deletion of the GFP gene. To improve the stability of the vector, the internal ribosome entry site (IRES) of a picornavirus, encephalomyocarditis virus, was used instead of the second subgenomic promoter to eliminate homology. Construction was initiated by first replacing the subgenomic promoter in the parent Robo infectious clone with the IRES. Surprisingly, viable virus resulted; this virus did not synthesize a subgenomic RNA. The subgenomic promoter was then reintroduced in an orientation such that a single subgenomic RNA was produced, GFP was the initial gene on this RNA, while the RUB structural protein open reading frame was downstream and under control of the IRES element. GFP expression by this vector was significantly improved in comparison to dsRobo/GFP. This strategy should be applicable to increase the stability of other togavirus vectors.  相似文献   

15.
In Tetrahymena thermophila, an "antisense ribosome" technology has been developed for inhibiting gene expression and generating novel mutants. Short segments of genes are inserted in antisense orientation into an rDNA vector in a region corresponding to an external loop of the folded rRNA. DNA segments derived from the 5'-ends of genes have proven most effective in reducing cognate gene expression. To investigate the efficacy of other genic regions, we generated Tetrahymena cell lines with antisense ribosome constructs containing 100-bp DNA segments derived from the 5'-ends, 3'-ends, and internal coding regions of two non-essential genes, granule lattice protein 1 and macronuclear histone H1. The 5'- and 3'-end constructs inhibited gene expression, but antisense ribosomes derived exclusively from coding regions had little effect.  相似文献   

16.
SARS coronavirus (SCoV) nonstructural protein (nsp) 1, a potent inhibitor of host gene expression, possesses a unique mode of action: it binds to 40S ribosomes to inactivate their translation functions and induces host mRNA degradation. Our previous study demonstrated that nsp1 induces RNA modification near the 5'-end of a reporter mRNA having a short 5' untranslated region and RNA cleavage in the encephalomyocarditis virus internal ribosome entry site (IRES) region of a dicistronic RNA template, but not in those IRES elements from hepatitis C or cricket paralysis viruses. By using primarily cell-free, in vitro translation systems, the present study revealed that the nsp1 induced endonucleolytic RNA cleavage mainly near the 5' untranslated region of capped mRNA templates. Experiments using dicistronic mRNAs carrying different IRESes showed that nsp1 induced endonucleolytic RNA cleavage within the ribosome loading region of type I and type II picornavirus IRES elements, but not that of classical swine fever virus IRES, which is characterized as a hepatitis C virus-like IRES. The nsp1-induced RNA cleavage of template mRNAs exhibited no apparent preference for a specific nucleotide sequence at the RNA cleavage sites. Remarkably, SCoV mRNAs, which have a 5' cap structure and 3' poly A tail like those of typical host mRNAs, were not susceptible to nsp1-mediated RNA cleavage and importantly, the presence of the 5'-end leader sequence protected the SCoV mRNAs from nsp1-induced endonucleolytic RNA cleavage. The escape of viral mRNAs from nsp1-induced RNA cleavage may be an important strategy by which the virus circumvents the action of nsp1 leading to the efficient accumulation of viral mRNAs and viral proteins during infection.  相似文献   

17.
18.
19.
20.
Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nucleotide elements permitting selective AIMV CP expression, we tested capped mRNAs containing structured or unstructured 5' leader sequences in addition to an mRNA containing the poliovirus internal ribosome entry site (IRES). Translations were performed with PI-extracts and extracts prepared from mock-infected HeLa cells (MI-extracts). A number of control criteria demonstrated that the HeLa cells were infected by poliovirus and that the extracts were translationally active. The data strongly indicate that translation of RNAs lacking an internal ribosome entry site, including AIMV CP RNA, was severely compromised in PI-extracts, and we find no evidence that the unstructured AIMV CP RNA 5' leader sequence acts in cis to bypass the poliovirus translational control. Nevertheless, cotranslation assays in the MI-extracts demonstrate that mRNAs containing the unstructured AIMV CP RNA 5' untranslated region have a competitive advantage over those containing the rabbit alpha-globin 5' leader. Previous reports of AIMV CP RNA translation in PI-extracts likely describe inefficient expression that can be explained by residual cap-dependent initiation events, where AIMV CP RNA translation is competitive because of a diminished quantitative requirement for initiation factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号