首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cystathionine beta-synthase (CBS), a pyridoxal 5'-phosphate (PLP) dependent enzyme, catalyzes the condensation of serine and homocysteine to form cystathionine. Mammalian CBS was recently shown to be a heme protein. While the role of heme in CBS is unknown, catalysis by CBS can be explained solely by participation of PLP in the reaction mechanism. In this study, treatment of CBS with sodium borohydride selectively reduced the Schiff base but did not affect the heme. Purification and sequencing of the PLP-cross-linked peptide from a trypsin digest of the reduced enzyme revealed the evolutionarily conserved Lys119 to be the residue forming the Schiff base. Serine and hydroxylamine form an alpha-aminoacrylate and an oxime with PLP in CBS, respectively. The sulfhydryl-containing substrate, homocysteine, disturbs the heme environment but does not interact with PLP. In contrast to other PLP-dependent enzymes, CBS emits no PLP-related fluorescence when excited at 296 or 330 nm. PLP but not heme dissociates from the enzyme in the presence of hydroxylamine. The dissociation of PLP is a multistage process involving a short approximately 500 s lag phase, followed by a rapid inactivation and a slower PLP-oxime formation. PLP-free CBS exhibits a decrease of secondary structure as well as loss of CBS activity that can be only partially restored by PLP. This study constitutes the first comprehensive investigation of PLP interaction with a heme protein.  相似文献   

2.
Cystathionine beta-synthase (CBS) is a unique heme- containing enzyme that catalyzes a pyridoxal 5'-phosphate (PLP)-dependent condensation of serine and homocysteine to give cystathionine. Deficiency of CBS leads to homocystinuria, an inherited disease of sulfur metabolism characterized by increased levels of the toxic metabolite homocysteine. Here we present the X-ray crystal structure of a truncated form of the enzyme. CBS shares the same fold with O-acetylserine sulfhydrylase but it contains an additional N-terminal heme binding site. This heme binding motif together with a spatially adjacent oxidoreductase active site motif could explain the regulation of its enzyme activity by redox changes.  相似文献   

3.
Our studies of cystathionine beta-synthase from Saccharomyces cerevisiae (yeast) are aimed at clarifying the cofactor dependence and catalytic mechanism and obtaining a system for future investigations of the effects of mutations that cause human disease (homocystinuria or coronary heart disease). We report methods that yielded high expression of the yeast gene in Escherichia coli and of purified yeast cystathionine beta-synthase. The absorption and circular dichroism spectra of the homogeneous enzyme were characteristic of a pyridoxal phosphate enzyme and showed the absence of heme, which is found in human and rat cystathionine beta-synthase. The absence of heme in the yeast enzyme facilitates spectroscopic studies to probe the catalytic mechanism. The reaction of the enzyme with L-serine in the absence of L-homocysteine produced the aldimine of aminoacrylate, which absorbed at 460 nm and had a strong negative circular dichroism band at 460 nm. The formation of this intermediate from the product, L-cystathionine, demonstrates the partial reversibility of the reaction. Our results establish the overall catalytic mechanism of yeast cystathionine beta-synthase and provide a useful system for future studies of structure and function. The absence of heme in the functional yeast enzyme suggests that heme does not play an essential catalytic role in the rat and human enzymes. The results are consistent with the absence of heme in the closely related enzymes O-acetylserine sulfhydrylase, threonine deaminase, and tryptophan synthase.  相似文献   

4.
5.
Ojha S  Hwang J  Kabil O  Penner-Hahn JE  Banerjee R 《Biochemistry》2000,39(34):10542-10547
Human cystathionine beta-synthase is one of two key enzymes involved in intracellular metabolism of homocysteine. It catalyzes a beta-replacement reaction in which the thiolate of homocysteine replaces the hydroxyl group of serine to give the product, cystathionine. The enzyme is unusual in its dependence on two cofactors: pyridoxal phosphate and heme. The requirement for pyridoxal phosphate is expected on the basis of the nature of the condensation reaction that is catalyzed; however the function of the heme in this protein is unknown. We have examined the spectroscopic properties of the heme in order to assign the axial ligands provided by the protein. The heme Soret peak of ferric cystathionine beta-synthase is at 428 nm and shifts to approximately 395 nm upon addition of the thiol chelator, mercuric chloride. This is indicative of 6-coordinate low-spin heme converting to a 5-coordinate high-spin heme. The enzyme as isolated exhibits a rhombic EPR signal with g values of 2.5, 2.3, and 1.86, which are similar to those of heme proteins and model complexes with imidazole/thiolate ligands. Mercuric chloride treatment of the enzyme results in conversion of the rhombic EPR signal to a g = 6 signal, consistent with formation of the high-spin ferric heme. The X-ray absorption data reveal that iron in ferric cystathionine beta-synthase is 6-coordinate, with 1 high-Z scatterer and 5 low-Z scatterers. This is consistent with the presence of 5 nitrogens and 1 sulfur ligand. Together, these data support assignment of the axial ligands as cysteinate and imidazole in ferric cystathionine beta-synthase.  相似文献   

6.
Cystathionine beta-synthase (CBS) catalyzes the condensation of serine and homocysteine to cystathionine, which represents the committing step in the transsulfuration pathway. CBS is unique in being a pyridoxal phosphate-dependent enzyme that has a heme cofactor. The activity of CBS under in vitro conditions is responsive to the redox state of the heme, which is distant from the active site and has been postulated to play a regulatory role. The heme in CBS is unusual; it is six-coordinate, low spin, and contains cysteine and histidine as axial ligands. In this study, we have assessed the redox behavior of a human CBS dimeric variant lacking the C-terminal regulatory domain. Potentiometric redox titrations showed a reversible response with a reduction potential of -291 +/- 5 mV versus the normal hydrogen electrode, at pH 7.2. Stopped-flow kinetic determinations demonstrated that Fe(II)CBS reacted with dioxygen yielding Fe(III)CBS without detectable formation of an intermediate species. A linear dependence of the apparent rate constant of Fe(II)CBS decay on dioxygen concentration was observed and yielded a second-order rate constant of (1.11 +/- 0.07) x 10 (5) M (-1) s (-1) at pH 7.4 and 25 degrees C for the direct reaction of Fe(II)CBS with dioxygen. A similar reactivity was observed for full-length CBS. Heme oxidation led to superoxide radical generation, which was detected by the superoxide dismutase (SOD)-inhibitable oxidation of epinephrine. Our results show that CBS may represent a previously unrecognized source of cytosolic superoxide radical.  相似文献   

7.
Human cystathionine beta-synthase is a pyridoxal 5'-phosphate enzyme containing a heme binding domain and an S-adenosyl-l-methionine regulatory site. We have investigated by single crystal microspectrophotometry the functional properties of a mutant lacking the S-adenosylmethionine binding domain. Polarized absorption spectra indicate that oxidized and reduced hemes are reversibly formed. Exposure of the reduced form of enzyme crystals to carbon monoxide led to the complete release of the heme moiety. This process, which takes place reversibly and without apparent crystal damage, facilitates the preparation of a heme-free human enzyme. The heme-free enzyme crystals exhibited polarized absorption spectra typical of a pyridoxal 5'-phosphate-dependent protein. The exposure of these crystals to increasing concentrations of the natural substrate l-serine readily led to the formation of the key catalytic intermediate alpha-aminoacrylate. The dissociation constant of l-serine was found to be 6 mm, close to that determined in solution. The amount of the alpha-aminoacrylate Schiff base formed in the presence of l-serine was pH independent between 6 and 9. However, the rate of the disappearance of the alpha-aminoacrylate, likely forming pyruvate and ammonia, was found to increase at pH values higher than 8. Finally, in the presence of homocysteine the alpha-aminoacrylate-enzyme absorption band readily disappears with the concomitant formation of the absorption band of the internal aldimine, indicating that cystathionine beta-synthase crystals catalyze both beta-elimination and beta-replacement reactions. Taken together, these findings demonstrate that the heme moiety is not directly involved in the condensation reaction catalyzed by cystathionine beta-synthase.  相似文献   

8.
During the past 20 years, cystathionine beta-synthase (CBS) deficiency has been detected in the former Czechoslovakia with a calculated frequency of 1:349,000. The clinical manifestation was typical of homocystinuria, and about half of the 21 patients were not responsive to pyridoxine. Twelve distinct mutations were detected in 30 independent homocystinuric alleles. One half of the alleles carried either the c.833 T-->C or the IVS11-2A-->C mutation; the remaining alleles contained private mutations. The abundance of five mutant mRNAs with premature stop codons was analyzed by PCR-RFLP. Two mRNAs, c.828_931ins104 (IVS7+1G-->A) and c.1226 G-->A, were severely reduced in the cytoplasm as a result of nonsense-mediated decay. In contrast, the other three mRNAs-c.19_20insC, c.28_29delG, and c.210_235del26 (IVS1-1G-->C)-were stable. Native western blot analysis of 14 mutant fibroblast lines showed a paucity of CBS antigen, which was detectable only in aggregates. Five mutations-A114V (c.341C-->T), A155T (c.463G-->A), E176K (c.526G-->A), I278T (c.833T-->C), and W409_G453del (IVS11-2A-->C)-were expressed in Escherichia coli. All five mutant proteins formed substantially more aggregates than did the wild-type CBS, and no aggregates contained heme. These data suggest that abnormal folding, impaired heme binding, and aggregation of mutant CBS polypeptides may be common pathogenic mechanisms in CBS deficiency.  相似文献   

9.
The most common cause of severely elevated homocysteine or homocystinuria is inherited disorders in cystathionine beta-synthase. The latter enzyme is a unique hemeprotein that catalyzes pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine to give cystathionine, thus committing homocysteine to catabolism. A point mutation, V168M, has been described in a homocystinuric cell line and is associated with a B(6)-responsive phenotype. In this study, we have examined the kinetic properties of this mutant and demonstrate that the mutation affects the PLP but not the heme content. The approximately 13-fold diminution in activity because of the mutation corresponds to an approximately 7-fold decrease in the level of bound PLP. This may be explained by half of the sites activity associated with cystathionine beta-synthase. The addition of PLP results in partial but not full restoration of activity to wild type levels. Elimination of the C-terminal quarter of the mutant protein results in alleviation of the catalytic penalty imposed by the V168M mutation. The resulting truncated protein is very similar to the corresponding truncated enzyme with wild type sequence and is now able to bind the full complement of both heme and PLP cofactors. These results indicate that the V168M mutation per se does not affect binding of PLP directly and that interactions between the regulatory C terminus and the catalytic N terminus are important in modulating the cofactor content and therefore the activity of the full-length enzyme. These studies provide the first biochemical explanation for the B(6)-responsive phenotype associated with a cystathionine beta-synthase-impaired homocystinuric genotype.  相似文献   

10.
Human cystathionine beta-synthase (CBS) is a unique pyridoxal-5'-phosphate-dependent enzyme in which heme is also present as a cofactor. Because the function of heme in this enzyme has yet to be elucidated, the study presented herein investigated possible relationships between the chemistry of the heme and the strong pH dependence of CBS activity. This study revealed, via study of a truncation variant, that the catalytic core of the enzyme governs the pH dependence of the activity. The heme moiety was found to play no discernible role in regulating CBS enzyme activity by sensing changes in pH, because the coordination sphere of the heme is not altered by changes in pH over a range of pH 6-9. Instead, pH was found to control the equilibrium amount of ferric and ferrous heme present after reaction of CBS with one-electron reducing agents. A variety of spectroscopic techniques, including resonance Raman, magnetic circular dichroism, and electron paramagnetic resonance, demonstrated that at pH 9 Fe(II) CBS is dominant while at pH 6 Fe(III) CBS is favored. At low pH, Fe(II) CBS forms transiently but reoxidizes by an apparent proton-gated electron-transfer mechanism. Regulation of CBS activity by the iron redox state has been proposed as the role of the heme moiety in this enzyme. Given that the redox behavior of the CBS heme appears to be controlled by pH, interplay of pH and oxidation state effects must occur if CBS activity is redox regulated.  相似文献   

11.
A single specific radiolabeled polypeptide with an apparent Mr = 63,000 was recovered when cystathionine beta-synthase (EC 4.2.1.22) was precipitated from extracts of radiolabeled cultured human fibroblasts with an antiserum raised against pure human liver synthase, and the immunocomplexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Partial proteolysis of this fibroblast subunit and of the subunit of pure human liver synthase (Mr = 48,000) produced similar peptide patterns. Pulse-chase experiments, however, did not provide any evidence for post-translational modification of the fibroblast synthase subunit into a smaller "hepatic" form. Immunoprecipitation of polypeptides synthesized in vitro from human fibroblast mRNA revealed a polypeptide with the same mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as the synthase subunit found in whole cell extracts. We conclude that the Mr = 63,000 subunit is the primary translational product of the gene for cystathionine beta-synthase in human fibroblasts.  相似文献   

12.
Cystathionine beta-synthase (CBS) is a pyridoxal-5'-dependent enzyme that catalyzes the condensation of homocysteine and serine to form cystathionine. Human CBS is unique in that heme is also required for maximal activity, although the function of heme in this enzyme is presently unclear. The study presented herein reveals that the heme of human CBS undergoes a coordination change upon reduction at elevated temperatures. We have termed this new species "CBS424" and demonstrate that its formation is likely irreversible when pH 9 Fe(III) CBS is reduced at moderately elevated temperatures (approximately 40 degrees C and higher) or when pH 9 Fe(II) CBS is heated to similar temperatures. Spectroscopic techniques, including resonance Raman, electronic absorption, and variable temperature/variable field magnetic circular dichroism spectroscopy, provide strong evidence that CBS424 is coordinated by two neutral donor ligands. It appears likely that the native cysteine(thiolate) heme ligand is displaced by an endogenous neutral donor upon conversion to CBS424. This behavior is consistent with other six-coordinate, cysteine(thiolate)-ligated heme centers, which seek to avoid this coordination structure in the Fe(II) state. Functional assays show that CBS424 is inactive and suggest that the ligand switch is responsible for eliminating enzyme activity. When this investigation is taken together with other functional studies of CBS, it provides strong evidence that coordination of Cys52 to the heme iron is crucial for full activity in this enzyme. We hypothesize that cysteine displacement may serve as a mechanism for CBS inactivation and that second-sphere interactions of the Cys52 thiolate with surrounding residues are responsible for communicating the heme ligand displacement to the CBS active site.  相似文献   

13.
S Taoka  L Widjaja  R Banerjee 《Biochemistry》1999,38(40):13155-13161
Cystathionine beta-synthase is a unique heme protein that catalyzes a pyridoxal phosphate (or PLP)-dependent beta-replacement reaction. The reaction involves the condensation of serine and homocysteine and constitutes one of the two major avenues for detoxification of homocysteine in mammals. The enzyme is allosterically regulated by S-adenosylmethionine (AdoMet). In this study, we have characterized the kinetic, spectroscopic, and ligand binding properties of a truncated catalytic core of cystathionine beta-synthase extending from residues 1 through 408 in which the C-terminal 143 residues have been deleted. This is similar to a natural variant of the protein that has been described in a homocystinuric patient in which the predicted peptide is 419 amino acids in length. Truncation leads to the formation of a dimeric enzyme in contrast to the tetrameric organization of the native enzyme. Some of the kinetic properties of the truncated enzyme are different from the full-length form, most notably, significantly higher K(m)s for the two substrates, and loss of activation by AdoMet. This is paralleled by the absence of AdoMet binding to the truncated form, whereas four AdoMet molecules bind cooperatively to the full-length tetrameric enzyme with a K(d) of 7. 4 microM. Steady-state kinetic analysis indicates that the order of substrate addition is important. Thus, preincubation of the enzyme with homocysteine leads to a 2-fold increase in V(max) relative to preincubation of the enzyme with serine. Since the intracellular concentration of serine is significantly greater than that of homocysteine, the physiological significance of this phenomenon needs to be considered. Based on ligand binding studies and homology searches with protein sequences in the database, we assign residues 68-209 as being important for PLP binding, residues 241-341 for heme binding, and residues 421-469 for AdoMet binding.  相似文献   

14.
Two classes of cystathionine beta-synthases have been identified in eukaryotes, the heme-independent enzyme found in yeast and the heme-dependent form found in mammals. Both classes of enzymes catalyze a pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine to produce cystathionine. The role of the heme in the human enzyme and its location relative to the PLP in the active site are unknown. (31)P NMR spectroscopy revealed that spin-lattice relaxation rates of the phosphorus nucleus in PLP are similar in both the paramagnetic ferric (T(1) = 6.34 +/- 0.01 s) and the diamagnetic ferrous (T(1) = 5.04 +/- 0.06 s) enzyme, suggesting that the two cofactors are not proximal to each other. This is also supported by pulsed EPR studies that do not provide any evidence for strong or weak coupling between the phosphorus nucleus and the ferric iron. However, the (31)P signal in the reduced enzyme moved from 5.4 to 2.2 ppm, and the line width decreased from 73 to 16 Hz, providing the first structural evidence for transmission to the active site of an oxidation state change in the heme pocket. These results are consistent with a regulatory role for the heme as suggested by previous biochemical studies from our laboratory. The (31)P chemical shifts of the resting forms of the yeast and human enzymes are similar, suggesting that despite the difference in their heme content, the microenvironment of the PLP is similar in the two enzymes. The addition of the substrate, serine, resulted in an upfield shift of the phosphorus resonance in both enzymes, signaling formation of reaction intermediates. The resting enzyme spectra were recovered following addition of excess homocysteine, indicating that both enzymes retained catalytic activity during the course of the NMR experiment.  相似文献   

15.
Reaction mechanism and regulation of cystathionine beta-synthase   总被引:3,自引:0,他引:3  
In mammals, cystathionine beta-synthase catalyzes the first step in the transsulfuration pathway which provides an avenue for the conversion of the essential amino acid, methionine, to cysteine. Cystathionine beta-synthase catalyzes a PLP-dependent condensation of serine and homocysteine to cystathionine and is unique in also having a heme cofactor. In this review, recent advances in our understanding of the kinetic mechanism of the yeast and human enzymes as well as pathogenic mutants of the human enzyme and insights into the role of heme in redox sensing are discussed from the perspective of the crystal structure of the catalytic core of the human enzyme.  相似文献   

16.
Ojha S  Wu J  LoBrutto R  Banerjee R 《Biochemistry》2002,41(14):4649-4654
Human cystathionine beta-synthase is a hemeprotein that catalyzes a pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine into cystathionine. Biophysical characterization of this enzyme has led to the assignment of the heme ligands as histidine and cysteinate, respectively, which has recently been confirmed by crystal structure determination of the catalytic core of the protein. Using site-directed mutagenesis, we confirm that C52 and H65 represent the thiolate and histidine ligands to the heme. Conversion of C52 to alanine or serine results in spectral properties of the resulting hemeprotein that are consistent with the loss of a thiolate ligand. Thus, the Soret peak blue-shifts from 428 to 415 and 417 nm in the ferric forms of the C52S and C52A mutants, respectively, and from 450 to 423 nm in the ferrous states of both mutants. Addition of CO to the dithionite-reduced ferrous C52 mutants results in spectra with Soret peaks at 420 nm. EPR spectroscopy of the ferric C52 variants reveals the predominance of a high-spin species. The H65R mutant, a variant described in a homocystinuric patient, has Soret peaks at 424, 421, and 420 nm in the ferric, ferrous, and ferrous CO states, respectively. EPR spectroscopy reveals predominance of the low-spin species. Both C52A and C52S mutations lead to protein with substoichiometric heme (19% with respect to wild type); however, the PLP content is comparable to that of wild-type enzyme. The heme and PLP contents of the H65R mutant are 40% and 75% that of wild-type enzyme. These results indicate that heme saturation does not dictate PLP saturation in these mutant enzymes. Both H65 and C52 variants display low catalytic activity, revealing that changes in the heme binding domain modulate activity, consistent with a regulatory role for this cofactor.  相似文献   

17.
Interaction of rat and human cystathionine-beta-synthase (CBS) with various potential ligands has been studied by visible and EPR spectroscopy in order to explore the coordination chemistry of this atypical hemeprotein. Ferric CBS did not react with any classical hemeprotein ligands, such as various imidazole and pyridine derivatives, N(-)(3) and isonitriles RNC. Ferrous CBS also failed to bind these nitrogenous ligands or nitrosoalkanes. However, it reacts with various isonitriles RNC, leading to complexes characterized by a Soret peak at 433 +/- 2 nm. Binding of isonitriles to ferrous CBS is a relatively slow process; its rate markedly depends on the nature of R. It thus seems that the only exogenous ligands able to bind CBS iron are carbon-centered, very strong heme-Fe(II) ligands such as CNR, CO, and CN(-), presumably after dissociation of the CBS-iron(II)-cysteinate bond. Isonitriles appear as interesting tools for further studies on the topology of CBS active site.  相似文献   

18.
BACKGROUND: Among infants born with spina bifida, the most common defect is myelomeningocele (MM). The prevention of MM by maternal periconceptional folic acid (FA) supplementation has been studied extensively. The protective effect provided by FA suggests that the genes involved in folate metabolism, such as cystathionine beta‐synthase (CBS), warrant further investigation. METHODS: This study sequenced the DNA from 96 patients with MM to identify novel potential disease‐causing variants across the 17 exons of the CBS gene. The frequencies of known single nucleotide polymorphisms (SNPs) were identified, and sequences that differed from the reference sequences were considered novel variants. Statistical analysis was performed using two‐sided Fisher's exact test to compare frequencies of SNPs between groups of patients and the known population frequencies. RESULTS: We found a new variant in exon 3 in one patient that results in a G/A change subsequently encoding a stop codon. In addition, we found a new variant in the 3′‐UTR of exon 17. Allele frequencies for 10 known single nucleotide polymorphisms (SNPs) were determined: rs234706, rs72058776, rs1801181, rs6582281, rs71872941, rs12613, rs706208, rs706209, rs73906420, and rs9982921. Of the remaining 48 known SNPs, all tested DNAs were homozygous for the major allele. CONCLUSION: We identified a previously undescribed variant in exon 3 that encodes a stop codon, thus halting downstream translation of the CBS protein. According to the Human Splicing Finder, the 3′‐UTR variant found in exon 17 is predicted to abolish the recognition sites for two splice binding factors, SRp40 and SF2/ASF. The functional significance of the 3′‐UTR mutation needs to be investigated. Birth Defects Research (Part A), 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Human cystathionine beta-synthase (CBS) is an essential enzyme for the removal of the toxic metabolite homocysteine. Heme and pyridoxal phosphate (PLP) cofactors are necessary to catalyze the condensation of homocysteine and serine to generate cystathionine. While the role for the PLP cofactor is thought to be similar to that in other PLP-dependent enzymes that catalyze beta-replacement reactions, the exact role for the heme remains unclear. In this study, we have characterized the heme cofactor of CBS in both the ferric and ferrous states using resonance Raman spectroscopy. Positive identification of a cysteine ligand was achieved by global (34)S isotopic substitution which allowed us to assign the nu(Fe-S) for the six-coordinate low-spin ferric heme at 312 cm(-1). In addition, the CO adduct of ferrous CBS has vibrational frequencies characteristic of a histidine-heme-CO complex in a hydrophobic environment, and indicates that the Fe-S(Cys) bond is labile. We have also found that addition of HgCl(2) to the ferric heme causes conversion of the low-spin heme to a five-coordinate high-spin heme with loss of the cysteine ligand. The present spectroscopic studies do not support a reaction mechanism in which homocysteine binds directly to the heme via displacement of the Cys ligand in the binary enzyme complex, as had been previously proposed.  相似文献   

20.
Cystathionine beta-synthase [CBS; L-serine hydro-lyase (adding homocysteine), EC 4.2.1.22] catalyzes the first committed step of transsulfuration in both yeast and humans. It has been established previously that human CBS is a hemeprotein but although the heme group appears to be essential for CBS activity, the exact function of the heme group is unknown. CBS activity is absent in heme deficient strains of Saccharomyces cerevisiae grown without heme supplementation. CBS activity can be restored by supplementing these strains with heme, implying that there is a heme requirement for yeast CBS. We subcloned, overexpressed and purified yeast CBS. The yeast enzyme shows absolute pyridoxal 5'-phosphate (PLP) dependence for activity but we could find no evidence for the presence of a heme group. Given the degree of sequence and mechanistic similarity between yeast and human CBS, this result indicates that heme is unlikely to play a direct catalytic role in the human CBS reaction mechanism. Further characterization revealed that, in contrast to human CBS, S-adenosylmethionine (AdoMet) does not activate yeast CBS. Yeast CBS was found to be coordinately regulated with proliferation in S. cerevisiae. This finding is the most likely explanation of the observed apparent heme dependence of transsulfuration in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号