首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grassland restoration success depends on the development of plant communities that accord with restoration goals. Intraspecific variation in competitiveness may affect community development. For some grassland species, germplasm can be obtained from sources ranging from wild collections to selectively bred cultivars. The extent to which population source affects competitive outcomes in restoration projects is unclear. We addressed this knowledge gap in a glasshouse experiment comparing competitive response and effect among three sources of switchgrass (Panicum virgatum) that are available for restoration: selectively bred cultivars, commercial ecotypes (commercially produced but not deliberately selected), and wild collections. Two strains per source type were grown with four associates chosen to encompass varied functional groups: conspecifics, Bromus inermis, Cirsium arvense, and Solanum ptycanthum. Switchgrass competitive response was evaluated for survival, height, biomass, and shoot:root biomass ratio; competitive effect was assessed as associate survival, height, biomass, and shoot:root ratio. Competitive responses of cultivars and commercial ecotypes were broadly similar, although cultivar biomass exceeded both that of ecotypes and wild collections, and ecotypes had the highest shoot:root ratio. Wild collections were most negatively affected by competition. The shoot:root ratios of all sources were highest when grown with S. ptycanthum, indicating that competitive responses were plastic; plasticity in fitness‐related traits can contribute to persistence in variable environments. Cultivars exerted negative effects on B. inermis. Secondary analyses indicated that all switchgrass sources were most inhibited by the annual S. ptycanthum. To summarize, population source affected multiple aspects of switchgrass competitive ability, when grown against functionally varied associates.  相似文献   

2.
The effect of low growth temperature on morpho-physiological traits of maize was investigated by the means of a QTL analysis in a segregating F(2:3) population grown under field conditions in Switzerland. Chlorophyll fluorescence parameters, leaf greenness, leaf area, shoot dry weight, and shoot nitrogen content were investigated at the seedling stage for two years. Maize was sown on two dates in each year; thus, plants sown early were exposed to low temperature, whereas those sown later developed under more favourable conditions. The main QTLs involved in the functioning of the photosynthetic apparatus at low temperature were stable across the cold environments and were also identified under controlled conditions with suboptimal temperature in a previous study. Based on the QTL analysis, relationships between chlorophyll fluorescence parameters and leaf greenness were moderate. This indicates that the extent and functioning of the photosynthetic machinery may be under different genetic control. The functioning of the photosynthetic apparatus in plants developed at low temperature in the field did not noticeably affect biomass accumulation; since there were no co-locations between QTLs for leaf area and shoot dry weight, biomass accumulation did not seem to be carbon-limited at the seedling stage under cool conditions in the field.  相似文献   

3.
The increasing anthropogenic pressure in the rare rupestrian fields in southeastern Brazil has led to the expansion of degraded areas on the extremely nutrient-deficient quartzitic soils. On the other hand, the use of rupestrian field native species in reclamation programmes has been hampered by the lack of studies involving seedling physiological ecology. The present study evaluated biomass allocation and seedling growth rate during early seedling growth of four Fabaceae shrubs: Collaea cipoensis, Calliandra fasciculata, Chamaecrista ramosa, and Mimosa foliolosa. The following hypotheses were tested: (i) species proportionally allocate higher biomass to the roots, presenting a high root/shoot ratio; and (ii) species exhibit low phenotypic variation because they have adapted to poor nutritional environments. A 12-month greenhouse experiment was carried out to evaluate seedling growth and biomass allocation performance in substrates with contrasting levels of soil fertility. The four species studied presented values of root/shoot ratio lower than one in both fertility conditions of the substrate. Growth parameters for Collaea and Calliandra increased with increasing soil fertility, while no differences were observed for Mimosa and Chamaecrista. Although the four species are naturally adapted to low nutritional quality soils, seedling development was not hindered by high fertility substrate conditions. Despite the remarkable differences in fertility between the substrates, the responsiveness in growth and allocation in Chamaecrista and Mimosa was lower than that expected if the species would exhibit high phenotypic variation. The implications for rupestrian field restoration are discussed.  相似文献   

4.
Two cultivars of French bean (Phaseolus vulgaris L.) viz. contender and arka komal were planted in polythene bags containing sand and grown under glasshouse conditions. The nodulation status, shoot/root biomass, activities of several nodule enzymes, total soluble protein and leghaemoglobin contents were monitored over the entire growth period. Allantoinase activity in leaves was measured to monitor the ureide degrading capacity. Significant genotype difference was observed in both the cultivars. All the parameters showed a decline after flowering except uricase, which declined before flowering. Malate dehydrogenase and isocitrate dehydrogenase showed a constant decline throughout the growth period. Degree of decline varied with the genotype for all the parameters. Leghaemoglobin content, PEP carboxylase activity and ureide degrading capacity of leaves did not show an appreciable decline in contender and were significantly higher than in arka komal. These factors can be used to increase nitrogen fixation in French bean.  相似文献   

5.
Hauggaard-Nielsen  H.  de Neergaard  A.  Jensen  L.S.  Høgh-Jensen  H.  Magid  J. 《Plant and Soil》1998,203(1):91-101
Biofumigation refers to the suppression of soil-borne pests and pathogens by biocidal compounds released by Brassicaceous green manure and rotation crops when glucosinolates (GSLs) in their tissues are hydrolysed. We investigated the effect of environment and ontogeny on the GSL production, and thus biofumigation potential, of eight entries from five Brassica species. The environments included autumn and spring sown field plots (FA and FS) and potted plants grown under ambient conditions (PAM) or in a temperature controlled glasshouse at 20 °C/12 °C (PTC). GSL concentration was measured in the root and shoot tissue at buds-raised, flowering and maturity. Of particular interest was the suitability of the pot-grown plants for screening large numbers of brassicas for GSL production. The type of GSLs present in the tissues and their relative proportions remained relatively constant across environments and at different growth stages, with the exception of an increase in indolyl GSLs in the FS environment suspected of being induced by insect attack. Total GSL concentration generally declined from buds-raised to flowering in all environments, and was lowest at maturity. The exceptions were B. campestris, which had higher GSL concentration at flowering than at buds-raised, and the PTC environment in which most species also showed an increase at flowering. Despite GSL types and their proportions remaining relatively constant, the total GSL concentration in the root and shoot tissue of all entries varied significantly with environment (3–10-fold) and was generally ranked FS>PAM>FA>PTC. Interactions between species and environments meant that the ranking of the Brassica entries for total shoot and root GSL concentration changed with environment. However within three entries from B. napus, the ranking was consistent across the environments. The added effect of environment on phenological development and biomass production further influenced GSL production (the product of GSL concentration and biomass) on a ground area basis. The results suggest that glasshouse environments can be used to determine the types and proportions of GSLs present, and to rank entries within, but not between species for the total concentration in the tissues. However the influence of the environment on both GSL concentration and biomass production suggests that an accurate estimate of GSL production on a ground area basis to assess biofumigation potential will require measurement in the target environment.  相似文献   

6.
BACKGROUND AND AIMS: Plant architecture and its interaction with agronomic practices and environmental constraints are determinants of the structure of the canopy, which is involved in carbon acquisition and fruit quality development. A framework for the quantitative analysis of grapevine (Vitis vinifera) shoot architecture, based on a set of topological and geometrical parameters, was developed for the identification of differences between cultivars and the origins of phenotypic variability. METHODS: Two commercial cultivars ('Grenache N', 'Syrah') with different shoot architectures were grown in pots, in well-irrigated conditions. Shoot topology was analysed, using a hidden semi-Markov chain and variable-order Markov chains to identify deviations from the normal pattern of succession of phytomer types (P0-P1-P2), together with kinematic analysis of shoot axis development. Shoot geometry was characterized by final internode and individual leaf area measurements. KEY RESULTS: Shoot architecture differed significantly between cultivars. Secondary leaf area and axis length were greater for 'Syrah'. Secondary leaf area distribution along the main axis also differed between cultivars, with secondary leaves preferentially located towards the basal part of the shoot in 'Syrah'. The main factors leading to differences in leaf area between the cultivars were: (a) slight differences in main shoot structure, with the supplementary P0 phytomer on the lower part of the shoot in 'Grenache N', which bears a short branch; and (b) an higher rate and duration of development of branches bearing by P1-P2 phytomers related to P0 ones at the bottom of the shoot in 'Syrah'. Differences in axis length were accounted for principally by differences in individual internode morphology, with 'Syrah' having significantly longer internodes. This trait, together with a smaller shoot diameter, may account for the characteristic 'droopy' habit of 'Syrah' shoots. CONCLUSIONS: This study highlights the architectural parameters involved in the phenotypic variability of shoot architecture in two grapevine cultivars. Differences in primary shoot structure and in branch development potential accounted for the main differences in leaf area distribution between the two cultivars. By contrast, shoot shape seemed to be controlled by differences in axis length due principally to differences in internode length.  相似文献   

7.
Gehring  Catherine A. 《Plant Ecology》2003,167(1):127-139
Light intensity and root colonization by arbuscular mycorrhizal (AM) fungi are considered important factors affecting the performance of rain forest plants, yet few studies have examined how these two factors interact. Whether AM colonization promoted growth or caused shifts in biomass allocation in seedlings of four species of Australian rain forest tree (Flindersia brayleana, Acmena resa, Cryptocarya mackinnoniana and Cryptocarya angulata), grown in a glasshouse under light conditions that mimicked the shaded understory (3% PAR) and small light gaps (10% PAR), was examined. Seedlings were grown in sterilized field soil and either inoculated with AM fungi or provided sterile inoculum. Four major findings emerged. First, in all species, seedlings grown in small gap light intensities were larger than seedlings grown in understory light intensities. Second, when seedling biomass was included as a covariate, variation in light intensity was associated with significant shifts in biomass allocation. In all species, leaf area ratio was lower at 10% PAR than at 3% PAR, while root-to-shoot ratio showed the opposite pattern in one of the four species (C. mackinonniana). Third, although percentage root length colonized by AM fungi was greater at 10% PAR than 3% PAR in all species, this difference could be accounted for by variation in seedling size in all species except C. angulata. Fourth, growth and biomass allocation responses to AM colonization varied with light intensity and plant species. AM colonization promoted growth in both light regimes only in F. brayleana, while it had no effect on growth in C. mackinnoniana and C. angulata in either light regime and promoted growth only under high light in A. resa. AM colonization had no effect on leaf area ratio or root-to-shoot ratio in any of the species, and significantly altered specific root length in only one of the four species (C. mackinnoniana). These findings suggest that rain forest seedlings are highly variable in their growth responses to AM colonization and that some of this variability is related to the light intensity of the environment. Given that seedlings may spend many years in the shaded understory, these differences among species could have important effects on long-term seedling performance and seedling community dynamics.  相似文献   

8.
Vesicular-arbuscular mycorrhizal (VAM) associations often vary according to the abundance of available soil phosphorus (P). Therefore, understanding the response of crop plants to colonization by VAM fungi necessitates the study of the response of colonized and noncolonized plants, from a range of cultivars, to differing levels of P. Cowpea is grown throughout the world, often on impoverished soils in which it can benefit from formation of mycorrhizae. The present study was conducted to determine the response of four cultivars of cowpea (Vigna unguiculata (L.) Walp.), varying in nitrogen fixation capacity, to inoculation withGlomus fasciculatum at four levels of added P in the rooting medium. In a greenhouse experiment, four cowpea cultivars, Mississippi Silver, Brown Crowder, Six Week Browneye and MI 35, were grown with and without the mycorrhizal fungus at four levels of added P, 0, 10, 20 and 30 ppm. Root colonization (%) was negatively correlated with P content of the growth medium and shoot P concentration. Intraspecific variability was shown for shoot dry weight and leaf area in response to inoculation withG. fasciculatum at different P levels. The range of P required in the growth medium which allowed benefit fromG. fasciculatum was identified for individual cultivars using shoot dry weight and leaf area, and collectively across cultivars for other parameters.  相似文献   

9.
Eight fungicides (benodanil, carboxin, cyproconazole, fenpropimorph, fur-mecyclox, iprodione, pencycuron and tolclofos-methyl) were evaluated, under growth chamber conditions, as seed treatments against pre-emergence damping-off and post-emergence seedling root rot in six Brassica species. Five cultivars of B. rapa, four cultivars of B. juncea, four cultivars of B. napus and one cultivar/ strain from each of B. carinata, B. nigra and B. oleracea were grown in soilless mix infested with an isolate of Rhizoctonia solani AG-2-1. B. nigra and B. juncea were considerably less susceptible to R. solani than the four other species. Cyproconazole at 0.05-0.1 g a.i./kg seed and the other fungicides at 2–4 g a.i./ kg seed provided almost complete control of pre-emergence damping-off in most Brassica species and their cultivars. Their efficacy varied against the post-emergence seedling root rot. Furmecyclox, iprodione, tolclofos-methyl and pencycuron consistently gave good control of seedling root rot in all Brassica species and their cultivars. Benodanil and fenpropimorph provided moderate control, and carboxin and cyproconazole gave poor control against root rot. Efficacy of carboxin, cyproconazole, benodanil and fenopropimorph against seedling root rot varied significantly (P ≤ 0.05) among cultivars within a Brassica species.  相似文献   

10.
A glasshouse experiment was set up to compare processes and organisms in two soils planted with genetically modified (GM) herbicide tolerant (HT) maize treated with appropriate herbicides. This was part of a wider project (ECOGEN) looking at the consequences of GM cropping systems on soil biology using a tiered approach at laboratory, glasshouse and field scales. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow comparison between results under glasshouse and field conditions. The maize cultivars T25 (GM HT glufosinate-ammonium tolerant), Orient (non HT near isogenic control for T25) and Monumental (a conventional, non HT variety) were grown in contrasting sandy loam and clay loam soils, half were sprayed with the appropriate herbicide as used in the field and soil samples were taken at the five-leaf and flowering plant growth stage. The main effects on all measured parameters were those of soil type and plant growth stage, with four categories of subsequent interaction: (1) there were no effects of herbicide on plant growth or soil microarthropods: (2) the maize cultivar (but not the GM HT trait) had effects on the decomposition of cotton strips and the nematode community; (3) herbicide application in general altered the community level physiological profile of the microbial community and reduced both soil basal respiration and the abundance of protozoa; and (4) the specific application of glufosinate-ammonium to T25 maize altered soil microbial community structure measured by ester linked fatty acids. The results from this glasshouse experiment support the findings from the field that there are effects of herbicide application on the soil microbial and meso-faunal community but that, compared to other standard agricultural practices, the differences are relatively small.  相似文献   

11.
Summary A possible method of manipulating allelopathy would be to develop crop varieties showing an increased tolerance to allelopathic chemicals. We therefore examined four flax (Linum usitatissimum) varieties and two wild Linum species in the presence of p-coumaric acid and four barley (Hordeum vulgare) varieties in the presence of p-coumaric acid, scopoletin and wild oat (Avena fatua) extract. Analysis of variance indicates significant interaction between variety and treatment for shoot and root growth for seedling flax, shoot growth for older flax, and root growth for seedling barley. These differences in tolerance between varieties could be exploited to develop-varieties with greater tolerances to the allelochemicals produced by weeds or in crop residues and therefore potentially more tolerant of the presence of weeds.  相似文献   

12.
气候变化将增加地表平均气温、改变降水格局, 会影响到种子出苗和幼苗生长, 进而影响物种的更新动态。为探讨增温和降水变化对东灵山地区建群树种辽东栎(Quercus mongolica)种子出苗和一年生幼苗生长和适应状况的影响, 该文利用环境控制生长箱开展了温度和降水量的双因素控制实验, 温度设置3个梯度: 月平均气温(对照)、增温2 ℃和增温6 ℃; 降水量设置3个梯度: 月平均降水量(对照)、减水30%和加水30%。结果表明: 1)辽东栎的种子出苗率和一年生幼苗的生长对增温和降水变化的响应不一致, 种子出苗率主要受到降水及其与温度交互作用的影响, 幼苗生长仅受到温度和降水独立作用的影响; 2)春季增温2 ℃或降水量增加均使辽东栎种子出苗期提前; 增温6 ℃与降水量减少的水热组合延迟了种子出苗期并使其存活率和出苗率显著降低, 但在此温度下增加降水量则增加了出苗速率和出苗率。3)增温2 ℃对其生长无显著影响, 增温6 ℃则在不同水分条件下显著地增加了幼苗的比叶面积、抑制了叶的伸长生长, 同时也显著降低了各器官生物量积累, 并减少了幼苗生物量向根的分配; 降水量减少降低了幼苗根生物量, 但未影响总生物量和根冠比, 降水量增加显著促进了幼苗地上部分的生长, 特别是叶的生长。因此, 适当地增温或增加降水量将增加辽东栎幼苗的更新潜力, 但增温和降水量减少导致的干旱化将显著降低幼苗的更新潜力。  相似文献   

13.
A range of growth attributes was measured in seedlings of 10 Trifolium repens populations, differing in leaf size and origin, grown in three temperature and two glasshouse environments. Growth rates of large leaf types of Mediterranean origin were higher than those of smaller leaf types at 10°C. However, the greater temperature response of the smaller leaf types resulted in higher growth rates for S.100 and S.184 than for a large leaf type from Israel at 20°C. The increase of growth rate with temperature was associated with changes in leaf area ratio and net assimilation rate between 10° and 15°C but only with changes in net assimilation rate between 15° and 20°C. Within each temperature environment, population differences in growth rate were related to differences in net assimilation rate rather than leaf expansion. At low temperature a greater proportion of dry matter was distributed to leaf tissue in large leaf types particularly those of Mediterranean origin but they showed a proportionately smaller increase in allocation to leaves with increasing temperature compared with small leaf types. In the glasshouse environments growth rates in spring were more than double those in the autumn. This difference was associated with net assimilation rates which were about five times greater in the spring environment. However, leaf area ratios in the spring were only half those in the autumn. These differences in leaf area ratio between the glasshouse environments were closely related to differences in specific leaf area but not to differences in distribution of dry matter to leaf tissue which was greater in the spring environment.  相似文献   

14.
15.
Plantlets of coconut were cultured in vitro under three different ambient conditions including a standard culture room, a culture room inside a glasshouse with natural light but controlled temperature, and a standard glasshouse with natural light and natural fluctuations of temperature. Plantlets from the 3 treatments were compared in terms of growth, plant survival as well as net photosynthesis and efficiency of PSII (Fv/Fm ratio) both at the end of the in vitro stage and at 3 stages of ex vitro acclimatization. At the end of the in vitro stage, plantlets cultured in vitro under glasshouse conditions showed the best performance showing the highest photosynthesis rate, dry weight and number of leaves. Plantlets from the standard culture room showed the lowest photosynthesis and growth rate. After 6 months of ex vitro acclimatization, plantlets originally grown in vitro under glasshouse conditions maintained better field survival and growth rates in terms of fresh weight, dry weight and leaf number than plantlets originally grown in vitro in the standard culture room. Although more studies are required to define the reason for this effect, it is clear that the conditions of standard culture rooms are not the best for in vitro cultivation of coconut and perhaps other tropical species.  相似文献   

16.
Some plants have the ability to maintain similar respiratory rates (measured at the growth temperature), even when grown at different temperatures, a phenomenon referred to as respiratory homeostasis. The underlying mechanisms and ecological importance of this respiratory homeostasis are not understood. In order to understand this, root respiration and plant growth were investigated in two wheat cultivars (Triticum aestivum L. cv. Stiletto and cv. Patterson) with a high degree of homeostasis, and in one wheat cultivar (T. aestivum L. cv. Brookton) and one rice cultivar (Oryza sativa L. cv. Amaroo) with a low degree of homeostasis. The degree of homeostasis (H) is defined as a quantitative value, which occurs between 0 (no acclimation) and 1 (full acclimation). These plants were grown hydroponically at constant 15 or 25 °C. A good correlation was observed between the rate of root respiration and the relative growth rates (RGR) of whole plant, shoot or root. The plants with high H showed a tendency to maintain their RGR, irrespective of growth temperature, whereas the plants with low H grown at 15 °C showed lower RGR than those grown at 25 °C. Among several parameters of growth analysis, variation in net assimilation rate per shoot mass (NARm) appeared to be responsible for the variation in RGR and rates of root respiration in the four cultivars. The plants with high H maintained their NARm at low growth temperature, but the plants with low H grown at 15 °C showed lower NARm than those grown at 25 °C. It is concluded that respiratory homeostasis in roots would help to maintain growth rate at low temperature due to a smaller decrease in net carbon gain at low temperature. Alternatively, growth rate per se may control the demand of respiratory ATP, root respiration rates and sink demands of photosynthesis. The contribution of nitrogen uptake to total respiratory costs was also estimated, and the effects of a nitrogen leak out of the roots and the efficiency of respiration on those costs are discussed.  相似文献   

17.
The transmission of Apple mosaic virus (ApMV; hop, H and intermediate, I serotypes) in Australian hop cultivars was assessed in glasshouse and field trials. Under field conditions, the rate of ApMV transmission was halved when contact between neighboring plants was prevented by early season applications of paraquat to restrict basal shoot growth. However, in a separate field trial the presence of root grafts between hop plants, which may contribute to virus transmission, was also suggested. In glasshouse trials, ApMV was transmitted successfully to hop by the mechanical inoculation of infective sap, simulated pruning, foliar contact, and root grafting, but not by root contact. The rate of mechanical transmission of ApMV to the hop cultivar ‘Victoria’ was greater than to other hop cultivars commonly grown in Australia. However, success of mechanical transmission of ApMV also appeared to be influenced by the cultivar from which inoculum was obtained. ApMV was detected throughout the year in all tissues, in chronically infected field grown plants of cultivar ‘Victoria’, suggesting a uniform virus distribution. The reliability of ApMV detection by serology did not decline in ‘Victoria’ plants later in the growing season as occurred in other cultivars.  相似文献   

18.
Chickpea genotypes differ in their sensitivity to Zn deficiency   总被引:4,自引:1,他引:3  
Khan  H.R.  McDonald  G.K.  Rengel  Z. 《Plant and Soil》1998,198(1):11-18
Zinc (Zn) deficiency is common in most of the chickpea growing areas of the world and growing Zn-efficient genotypes on Zn-deficient soil is a benign approach of universal interest. Response of 13 chickpea genotypes (10 desi and 3 kabuli) to Zn nutrition was studied in a pot experiment under glasshouse conditions. Plants were grown in a Zn-deficient siliceous sand for 6 weeks and fertilized with 0 (Zn–) and 2.5 mg Zn per kg soil (Zn+). When grown with no added Zn, Zn deficiency symptoms (chlorosis of younger leaves and stipules followed by necrosis of leaf margins) appeared 3–4 weeks after planting and were more apparent in cultivars Tyson, Amethyst and Dooen than Kaniva and T-1587. Zn deficiency reduced shoot growth, but it was less affected in breeding lines T-1587 and CTS 11308 than cultivars Tyson, Dooen, Amethyst and Barwon. Among all genotypes, Tyson produced the lowest root dry weight in Zn– treatment. Zinc efficiency based on shoot dry weight showed marked differences among genotypes; breeding lines CTS-60543, CTS-11308 and T-1587 were 2-fold more Zn-efficient than cultivars Tyson and Dooen. A higher Zn accumulation per plant and higher Zn uptake per g. of root dry weight were recorded in T-1587 and CTS-11308 when compared with Tyson. Root:shoot ratio was increased and proportionally more Zn was transported to the shoot when the soil was deficient. Cultivars that were very sensitive to Zn deficiency tended to have their root:shoot ratio increased by Zn deficiency more than less sensitive cultivars. The insensitive lines T-1587 and CTS-11308 transported more than 70% of the total absorbed Zn to the shoot. It is concluded that chickpea genotypes vary in their sensitivity to Zn deficiency. Advanced breeding lines T-1587 and CTS-11308 are relatively more Zn-efficient compared with Australian chickpea cultivar Tyson. Zn efficiency in chickpea genotypes is probably related to an efficient Zn absorption coupled with a better root to shoot transport.  相似文献   

19.
Six Argentinian wheat ( Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3-fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short-term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.  相似文献   

20.
We compared seedling growth of four Artemisia species dominated at different habitats to determine whether interspecific seedling growth variation of a same genus in tolerance to burial can be used to explain plant distribution in the sand dune field. Interdune lowland species, Artemisia gmelinii, stabilized dune species, A. frigida, semi-stabilized dune species, A. halodendron, and active dune species, A. wudanica were selected. Seedlings grown for 3 weeks were treated at five burial depths for three burial times in pot experiments. Species from the habitats with little burial had smaller survival rate, dry weight and stem elongation speed than those from the habitats with intensive burial when buried. Furthermore, when buried, the former tended to adjust biomass allocation between shoot and root and produce adventitious buds, while the latter tended to maintain a constant root:shoot ratio and produce adventitious roots. We conclude that (1) seedlings of species with a long evolutionary history of exposure to sand burial (from the active sand dune), show quicker stem growth when buried than do seedlings of species from the habitats with little or no sand burial; (2) seedlings of species which do not change root:shoot ratio might be more tolerant of sand burial than those do; (3) seedlings of species from the habitats with intensive sand burial is prone to produce adventitious roots and seedlings of species from the habitats with little or no sand burial tend to produce adventitious buds when buried.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号