共查询到20条相似文献,搜索用时 15 毫秒
1.
Mi YJ Hou B Liao QM Ma Y Luo Q Dai YK Ju G Jin WL 《Cell death and differentiation》2012,19(7):1175-1186
Nogo-A is originally identified as an inhibitor of axon regeneration from the CNS myelin. Nogo-A is mainly expressed by oligodendrocytes, and also by some neuronal subpopulations, particularly in the developing nervous system. Although extensive studies have uncovered regulatory roles of Nogo-A in neurite outgrowth inhibition, precursor migration, neuronal homeostasis, plasticity and neurodegeneration, its cell-autonomous functions in neurons are largely uncharacterized. Here, we show that HIV-1 trans-activating-mediated amino-Nogo-A protein transduction into cultured primary cortical neurons achieves an almost complete neuroprotection against oxidative stress induced by exogenous hydrogen peroxide (H(2)O(2)). Endogenously expressed neuronal Nogo-A is significantly downregulated upon H(2)O(2) treatment. Furthermore, knockdown of Nogo-A results in more susceptibility to acute oxidative insults and markedly increases neuronal death. Interacting with peroxiredoxin 2 (Prdx2), amino-Nogo-A reduces reactive oxygen species (ROS) generation and extracellular signal-regulated kinase phosphorylation to exert neuroprotective effects. Structure-function mapping experiments reveal that, out of NiG-Δ20, a novel region comprising residues 290-562 of amino-Nogo-A is indispensable for preventing oxidative neuronal death. Moreover, mutagenesis analysis confirms that cysteine residues 424, 464 and 559 are involved in the inhibition of ROS generation and neuroprotective role of amino-Nogo-A. Our data suggest that neuronal Nogo-A might play a cell-autonomous role in improving neuronal survival against oxidative insult through interacting with Prdx2 and scavenging of ROS. 相似文献
2.
Recent research indicates that cadmium (Cd) induces oxidative damage in cells; however, the mechanism of the oxidative stress induced by this metal is unclear. We investigated the effects of Cd on the individual complexes of the electron transfer chain (ETC) and on the stimulation of reactive oxygen species (ROS) production in mitochondria. The activity of complexes II (succinate:ubiquinone oxidoreductase) and III (ubiquinol:cytochrome c oxidoreductase) of mitochondrial ETC from liver, brain, and heart showed greater inhibition by Cd than the other complexes. Cd stimulated ROS production in the mitochondria of all three tissues mentioned above. The effect of various electron donors (NADH, succinate, and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinol) on ROS production was tested separately in the presence and in the absence of Cd. ESR showed that complex III might be the only site of ROS production induced by Cd. The results of kinetic studies and electron turnover experiments suggest that Cd may bind between semiubiquinone and cytochrome b566 of the Q0 site of cytochrome b of complex III, resulting in accumulation of semiubiquinones at the Q0 site. The semiubiquinones, being unstable, are prone to transfer one electron to molecular oxygen to form superoxide, providing a possible mechanism for Cd-induced generation of ROS in mitochondria. 相似文献
3.
Cell culture media (RPMI 1640, Dulbecco’s Minimal Essential Medium and yeast extract-peptone-glucose medium) were found to oxidize dichlorodihydrofluorescein diacetate and dihydrorhodamine 123, and to generate spin adduct of 5,5′-dimethyl-1-pyrroline N-oxide, which indicates formation of reactive oxygen species (ROS). The production of ROS was light dependent. The main component of the media responsible for the generation of ROS was riboflavin, but tryptophan, tyrosine, pyridoxine, and folic acid enhanced the effect of riboflavin. These observations point to exposure of cells to ROS under in vitro culture conditions. 相似文献
4.
Generation of reactive oxygen species, lipid peroxidation, and human sperm function 总被引:42,自引:0,他引:42
Recent studies have demonstrated that human spermatozoa are capable of generating reactive oxygen species and that this activity is significantly accelerated in cases of defective sperm function. In view of the pivotal role played by lipid peroxidation in mediating free radical damage to cells, we have examined the relationships between reactive oxygen species production, lipid peroxidation, and the functional competence of human spermatozoa. Using malondialdehyde production in the presence of ferrous ion promoter as an index of lipid peroxidation, we have shown that lipid peroxidation is significantly accelerated in populations of defective spermatozoa exhibiting high levels of reactive oxygen species production or in normal cells stimulated to produce oxygen radicals by the ionophore, A23187. The functional consequences of lipid peroxidation included a dose-dependent reduction in the ability of human spermatozoa to exhibit sperm oocyte-fusion, which could be reversed by the inclusion of a chain-breaking antioxidant, alpha-tocopherol. Low levels of lipid peroxidation also had a slight enhancing effect on the generation of reactive oxygen species in response to ionophore, without influencing the steady-state activity. At higher levels of lipid peroxidation, both the basal level of reactive oxygen species production and the response to A23187 were significantly diminished. In contrast, lipid peroxidation had a highly significant, enhancing effect on the ability of human spermatozoa to bind to both homologous and heterologous zonae pellucidae via mechanisms that could again be reversed by alpha-tocopherol. These results are consistent with a causative role for lipid peroxidation in the etiology of defective sperm function and also suggest a possible physiological role for the reactive oxygen species generated by human spermatozoa in mediating sperm-zona interaction. 相似文献
5.
Ana Sofia Rodrigues Beatriz Lacerda António J. M. Moreno João Ramalho‐Santos 《Cell biochemistry and function》2010,28(3):224-231
Mitochondrial proton leak can account for almost 20% of oxygen consumption and it is generally accepted that this process contributes to basal metabolism. In order to clarify the role of basal proton leak in testicular mitochondria, we performed a comparative study with kidney and liver mitochondrial fractions. Proton leak stimulated by linoleic acid and inhibited by guanosine diphosphate (GDP) was detected, in a manner that was correlated with protein levels for uncoupling protein 2 (UCP2) in the three fractions. Modulation of proton leak had an effect on reactive oxygen species production as well as on lipid peroxidation, and this effect was also tissue‐dependent. However, a possible role for the adenine nucleotide transporter (ANT) in testicular mitochondria proton leak could not be excluded. The modulation of proton leak appears as a possible and attractive target to control oxidative stress with implications for male gametogenesis. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
6.
Ischemic stroke is caused by obstruction of blood flow to the brain, resulting in energy failure that initiates a complex series of metabolic events, ultimately causing neuronal death. One such critical metabolic event is the activation of phospholipase A2 (PLA2), resulting in hydrolysis of membrane phospholipids and release of free fatty acids including arachidonic acid, a metabolic precursor for important cell-signaling eicosanoids. PLA2 enzymes have been classified as calcium-dependent cytosolic (cPLA2) and secretory (sPLA2) and calcium-independent (iPLA2) forms. Cardiolipin hydrolysis by mitochondrial sPLA2 disrupts the mitochondrial respiratory chain and increases production of reactive oxygen species (ROS). Oxidative metabolism of arachidonic acid also generates ROS. These two processes contribute to formation of lipid peroxides, which degrade to reactive aldehyde products (malondialdehyde, 4-hydroxynonenal, and acrolein) that covalently bind to proteins/nucleic acids, altering their function and causing cellular damage. Activation of PLA2 in cerebral ischemia has been shown while other studies have separately demonstrated increased lipid peroxidation. To the best of our knowledge no study has directly shown the role of PLA2 in lipid peroxidation in cerebral ischemia. To date, there are very limited data on PLA2 protein by Western blotting after cerebral ischemia, though some immunohistochemical studies (for cPLA2 and sPLA2) have been reported. Dissecting the contribution of PLA2 to lipid peroxidation in cerebral ischemia is challenging due to multiple forms of PLA2, cardiolipin hydrolysis, diverse sources of ROS arising from arachidonic acid metabolism, catecholamine autoxidation, xanthine oxidase activity, mitochondrial dysfunction, activated neutrophils coupled with NADPH oxidase activity, and lack of specific inhibitors. Although increased activity and expression of various PLA2 isoforms have been demonstrated in stroke, more studies are needed to clarify the cellular origin and localization of these isoforms in the brain, their responses in cerebral ischemic injury, and their role in oxidative stress. 相似文献
7.
Neuregulin induces sustained reactive oxygen species generation to mediate neuronal differentiation 总被引:4,自引:0,他引:4
Neuregulins (NRGs), which are highly expressed in the nervous system, bind and activate two receptor tyrosine kinases, ErbB-3 and ErbB-4. Recently, we have shown that ErbB-4 receptors expressed in PC12 cells mediate NRG-induced differentiation through the MAPK signaling pathway. Here we demonstrate that NRG induces an increase in the intracellular concentration of reactive oxygen species (ROS). N-acetylcysteine, a ROS scavenger, inhibited NRG-induced activation of Ras and Erk and PC12-ErbB-4 cell differentiation. These results suggest that ROS production is involved in NRG-mediated neuronal differentiation and that ROS can regulate activation of Ras and Erk. Constitutively active Ras enhanced ROS production and dominant negative Ras inhibited NRG-induced ROS production, suggesting, a positive regulatory loop between Ras and ROS. The mitogen, EGF, induced short-term ROS production whereas NRG and NGF, which induce cell differentiation, induced prolonged ROS production. These results strongly suggest that the kinetics of ROS production may determine whether the cells will differentiate or proliferate. 相似文献
8.
Autophagy is an evolutionarily conserved catabolic process that maintains cellular homeostasis under stress conditions such as starvation and pathogen infection. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that plays important roles in inflammation and tumorigenesis. Cytokines such as IL-1β and TNF-α that are induced by MIF have been shown to be involved in the induction of autophagy. However, the actual role of MIF in autophagy remains unclear. Here, we have demonstrated that incubation of human hepatoma cell line HuH-7 cells with recombinant MIF (rMIF) induced reactive oxygen species (ROS) production and autophagy formation, including LC3-II expression, LC3 punctae formation, autophagic flux, and mitochondria membrane potential loss. The autophagy induced by rMIF was inhibited in the presence of MIF inhibitor, ISO-1 as well as ROS scavenger N-acetyl-L-cysteine (NAC). In addition, serum starvation-induced MIF release and autophagy of HuH-7 cells were partly blocked in the presence of NAC. Moreover, diminished MIF expression by shRNA transfection or inhibition of MIF by ISO-1 decreased serum starvation-induced autophagy of HuH-7 cells. Taken together, these data suggest that cell autophagy was induced by MIF under stress conditions such as inflammation and starvation through ROS generation. 相似文献
9.
10.
The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase A(2) (PLA(2)), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of PLA(2) to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of PLA(2), the diverse sources of ROS, and the lack of specific PLA(2) inhibitors. In this review, we summarize the role of PLA(2) in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration. 相似文献
11.
Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species 总被引:3,自引:0,他引:3
The purpose of this study was to assess and compare the toxicity of beta-amyloid (Abeta) on primary cortical and mesencephalic neurons cultured with and without microglia in order to determine the mechanism underlying microglia-mediated Abeta-induced neurotoxicity. Incubation of cortical or mesencephalic neuron-enriched and mixed neuron-glia cultures with Abeta(1-42) over the concentration range 0.1-6.0 microm caused concentration-dependent neurotoxicity. High concentrations of Abeta (6.0 microm for cortex and 1.5-2.0 microm for mesencephalon) directly injured neurons in neuron-enriched cultures. In contrast, lower concentrations of Abeta (1.0-3.0 microm for cortex and 0.25-1.0 microm for mesencephalon) caused significant neurotoxicity in mixed neuron-glia cultures, but not in neuron- enriched cultures. Several lines of evidence indicated that microglia mediated the potentiated neurotoxicity of Abeta, including the observations that low concentrations of Abeta activated microglia morphologically in neuron-glia cultures and that addition of microglia to cortical neuron-glia cultures enhanced Abeta-induced neurotoxicity. To search for the mechanism underlying the microglia-mediated effects, several proinflammatory factors were examined in neuron-glia cultures. Low doses of Abeta significantly increased the production of superoxide anions, but not of tumor necrosis factor-alpha, interleukin-1beta or nitric oxide. Catalase and superoxide dismutase significantly protected neurons from Abeta toxicity in the presence of microglia. Inhibition of NADPH oxidase activity by diphenyleneiodonium also prevented Abeta-induced neurotoxicity in neuron-glia mixed cultures. The role of NADPH oxidase-generated superoxide in mediating Abeta-induced neurotoxicity was further substantiated by a study which showed that Abeta caused less of a decrease in dopamine uptake in mesencephalic neuron-glia cultures from NADPH oxidase-deficient mutant mice than in that from wild-type controls. This study demonstrates that one of the mechanisms by which microglia can enhance the neurotoxicity of Abeta is via the production of reactive oxygen species. 相似文献
12.
13.
Neuroprotective role of isoflavones in particular genistein might be resulted from their antioxidant activities in addition to their estrogenic actions. In the present study, we investigated effect of genistein on iron-induced free radical reaction in cultured cortical neurons. Thiobarbituric-acid-reactive species (TBARS) and superoxide dismutase (SOD) were measured after incubation of the cells with different concentrations of genistein in the absence or presence of iron (12.5 M) for 24 h. Genistein at 100 M significantly reduced the iron-induced TBARS, implying that genistein has an inhibitory role on iron-induced lipid peroxidation. Also, genistein (100 M) led to a relatively higher SOD level than that in iron treatment although no significant difference was found. The findings imply that the antioxidative effect of genistein is partly associated with its neuroprotective function. 相似文献
14.
Tsu-Shing Wang Ching-Fang Kuo Kun-Yan Jan Haimei Huang 《Journal of cellular physiology》1996,169(2):256-268
Arsenic, a human carcinogen, possesses a serious environmental threat but the mechanism of its toxicity remains unclear. Knowledge of how arsenic induces cell death and how cells escape the death path may help to understand arsenic carcinogenesis. We have investigated the nature of sodium arsenite-induced cell death in Chinese hamster ovary K1 cells. Following phosphate-citric acid buffer extraction, apoptotic cells with lower DNA content than the G1 cells were detected by flow cytometry. Immediately after 4 h of 40 μM arsenite treatment, no appreciable fraction of cells with sub-G1 DNA content was detected; however, the sub-G1 cell fraction increased with postarsenite incubation time, and detectable increase started at 8 h of incubation, whereas the intracellular peroxide level as measured by the fluorescent intensity of 2′,7′-dichlorofluorescein increased immediately following a 4-h arsenite treatment. Simultaneous treatment with arsenite plus antioxidant (N-acetyl-cysteine, Trolox, and Tempo); copper ion chelator (neocuproine); protein kinase inhibitor (H-7) or protein synthesis inhibitor (cycloheximide) reduced the fraction of sub-G1 cell and internucleosomal DNA degradation. Trolox, neocuproine, or cycloheximide given after arsenite treatment also effectively reduced apoptosis. These results lead to a working hypothesis that arsenite-induced apoptosis in CHO-K1 cells is triggered by the generation of hydrogen peroxide, followed by a copper-mediated Fenton reaction that catalyzes the production of hydroxyl radicals, which selectively activates protein kinase through de novo synthesis of macromolecules. © 1996 Wiley-Liss, Inc. 相似文献
15.
F. J. Xu G. Li C. W. Jin W. J. Liu S. S. Zhang Y. S. Zhang X. Y. Lin 《Biologia Plantarum》2012,56(1):89-96
The present study investigated the effects of aluminum on lipid peroxidation, accumulation of reactive oxygen species and
antioxidative defense systems in root tips of wheat (Triticum aestivum L.) seedlings. Exposure to 30 μM Al increased contents of malondialdehyde, H2O2, suproxide radical and Evans blue uptake in both genotypes, with increases being greater in Al-sensitive genotype Yangmai-5
than in Al-tolerant genotype Jian-864. In addition, Al treatment increased the activity of superoxide dismutase (SOD), peroxidase
(POD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR) and
glutathione peroxidase (GPX), as well as the contents of ascorbate (AsA) and glutathione (GSH) in both genotypes. The increased
activities SOD and POD were greater in Yangmai-5 than in Jian-864, whereas the opposite was true for the activities of CAT,
APX, MDHAR, GR and GPX and the contents of AsA and GSH. Consequently, the antioxidant capacity in terms of 2,2-diphenyl-1-picrylhydrazyl
(DPPH)-radical scavenging activity and ferric reducing/antioxidant power (FRAP) was greater in Jian-864 than in Yangmai-5. 相似文献
16.
Tom Schilling 《Cellular immunology》2010,265(2):87-90
Lipid rafts play an important role in regulating cellular processes and functions. Here, we demonstrate that in microglia stimulated with the pro-inflammatory lipid lysophosphatidylcholine (LPC), caspase-1 activation and NADPH oxidase activity depend on intact lipid rafts. Disruption of lipid rafts with methyl-β-cyclodextrin, fumonisin B1 or nystatin prevented LPC-stimulated caspase-1 activation and reactive oxygen species (ROS) production, whereas LPC-induced Na+ influx remained unaffected. Since ROS regulate caspase-1 activity in LPC-stimulated microglia, the effects of lipid raft-disrupting agents on caspase-1 activation can be related to their inhibition of NADPH oxidase-mediated ROS production. 相似文献
17.
Cephaloridine-induced lipid peroxidation initiated by reactive oxygen species as a possible mechanism of cephaloridine nephrotoxicity 总被引:3,自引:0,他引:3
Rat kidney microsomes reduced cephaloridine when incubated anaerobically with NADPH. Superoxide anion was generated in a concentration- and time-dependent manner when cephaloridine was incubated with rat kidney microsomes. Cephaloridine increased the in vitro peroxidation of rat kidney microsomal lipids in a concentration- and time-dependent manner. Cephaloridine-induced lipid peroxidation was inhibited by a combination of superoxide dismutase and catalase, by the hydroxyl radical scavengers, mannitol, (+)-cyanidanol-3 and by the singlet oxygen scavenger histidine in a concentration-dependent manner. It is proposed that cephaloridine nephrotoxicity may occur through the transfer of an electron from reduced cephaloridine to oxygen and subsequent formation of the superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These activated oxygen species then are very likely to react with membrane lipids to induce lipid peroxidation and nephrotoxicity. 相似文献
18.
Hussain AR Ahmed M Ahmed S Manogaran P Platanias LC Alvi SN Al-Kuraya KS Uddin S 《Free radical biology & medicine》2011,50(8):978-987
We provide evidence that thymoquinone (TQ), a natural compound isolated from Nigella sativa, induces growth inhibition and apoptosis in several primary effusion lymphoma (PEL) cell lines. Our data demonstrate that TQ treatment results in down-regulation of constitutive activation of AKT via generation of reactive oxygen species (ROS) and it causes conformational changes in Bax protein, leading to loss of mitochondrial membrane potential and release of cytochrome c to the cytosol. This leads to activation of caspase-9, caspase-3, and polyadenosine 5'-diphosphate ribose polymerase cleavage, leading to caspase-dependent apoptosis. Pretreatment of PEL cells with N-acetylcysteine, a scavenger of ROS, prevented TQ-mediated effects. In addition, subtoxic doses of TQ sensitized PEL cells to TRAIL via up-regulation of DR5. Altogether, these findings demonstrate that TQ is a potent inducer of apoptosis in PEL cells via release of ROS. They also raise the possibility that incorporation of TQ in treatment regimens for primary effusion lymphomas may provide a novel approach to sensitizing malignant cells and provide a molecular basis for such future translational efforts. 相似文献
19.
,β-Unsaturated carbonyl compounds have been implicated in a number of environmentally-related diseases. Often, the presence of ,β-unsaturated carbonyl functionality as part of either an aliphatic or cyclic structure is considered a structural alert for cytotoxicity. We examined the cytotoxicity of methyl vinyl ketone (MVK), an aliphatic, straight-chain ,β-unsaturated carbonyl compound, in murine GT1-7 hypothalamic neurons. In addition to its widespread environmental occurrence, MVK was selected due to its extensive use in the chemical industry. Also, MVK is a close structural analog of hydroxymethylvinyl ketone that, in part, mediates the cytotoxic effects of 1,3-butadiene in vivo. It was found that MVK at low micromolar concentrations induced extensive cell death that retained key features of apoptosis such as chromatin condensation and DNA fragmentation. The MVK-induced apoptosis was associated with depletion of glutathione, disruption of mitochondrial transmembrane potential, and increased generation of reactive oxygen species (ROS). Supplementation of neuronal cells with Trolox offered partial, but significant, protection against the MVK-induced cytotoxicity, presumably due to scavenging of ROS in situ. The suggested sequence of events in the MVK-induced apoptosis in neuronal cells involves the depletion of cellular glutathione followed by an increased generation of ROS and finally the loss of mitochondrial function. 相似文献
20.
Rui Kai Zhang Pu Wang Yu Cheng Lu Lang Lang Lan Wang Shao Chin Lee 《Journal of cellular physiology》2019,234(10):18230-18248
There is evidence that cadmium can initiate carcinogenesis. However, the underlying mechanisms remain unknown. There is also evidence that moderate centrosome amplification can initiate tumorigenesis. The present study investigated whether cadmium could trigger cell centrosome amplification, and examined the underlying molecular mechanisms. We found that cadmium was able to cause cell centrosome amplification at the subtoxic concentrations, in a dose-dependent manner. It could cause centrosome amplification via the signaling of reactive oxygen species (ROS). Proteomic analysis revealed that cadmium caused differential expressions of three proteins, which included HSPA1A which is associated with endoplasmic reticulum (ER) stress. Western blot analysis confirmed that cadmium upregulated HSPA1A. Further analyses showed that cadmium upregulated Bip and decreased the phosphorylation of ASK1 as well as increased the phosphorylation of MKK7 and c-Jun N-terminal kinases (JNK). Knockdown of JNK2 using small interfering RNA inhibited the cadmium-induced centrosome amplification but not the level of ROS. N-acetylcysteine did not inhibit the cadmium-activated ER stress pathway. In conclusion, our results suggest that cadmium can induce cell centrosome amplification via ROS as well as ER stress through the Bip–TRAF2–ASK1–MKK7–JNK signaling route, in parallel. More studies are required to clarify whether centrosome amplification underlies cadmium-induced carcinogenesis. 相似文献