首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The role of lipid peroxidation products formed in membranes of human blood leukocytes after irradiation with He-Ne laser was studied. It was found that low-intensity laser irradiation (0.3-1.6 J/cm2) leads to both cell activation and an increase in the content of lipid peroxidation products. The intensity of lipid peroxidation was analyzed by estimating the amount of TBA reactive products and lipid diene conjugates. Irradiation in the presence of an exogenous photosensitizer (protoporphyrin IX) enhanced the phenomena observed. The use of antioxidants (tocopherol and ionol) completely eliminated the laser-induced effects (changes in leukocyte activity and accumulation of lipid peroxidation products). These results can be explained by the fact that laser irradiation leads to the activation of lipid peroxidation in leukocyte membranes, which in turn enhances the response of cells to the stimulus (priming).  相似文献   

2.
The effect of diabetes in rats on lipid composition and order of synaptosomal membranes (SM) was determined in streptozotocin-induced diabetic rats after 6 weeks of chronic hyperglycemia. The cholesterol content was slightly, but not significantly, higher in diabetic SM (0.287±0.042 vs. 0.209±0.061 mol/mg protein). The phospholipid concentration in diabetic SM was significantly increased (0.515±0.042 vs. 0.305±0.041 mol/mg protein;P<0.005). Neither the molar ratios of cholesterol to phospholipids in the SM nor the fatty acid composition of the SM was significantly altered with diabetes. Diabetes did not affect membrane order or the thermotropic transition temperature of the SM as determined fluorometrically. On the other hand, the SM of diabetic rats had significantly increased concentration of lipid peroxidation products, namely conjugated dienes (the calculated O.D./mol phospholipids was 11.56±1.83 in controls and 19.95 ±4.1 in diabetic ratsP<0.01). Despite the accumulation of lipid peroxidation byproducts in SM of diabetic rats the overall membrane order and the cholesterol to phospholipid molar ratio do not appear to be significantly altered.  相似文献   

3.
Effects of oxidative stress on isolated rat ventricular myocytes were studied. Myocyte viability was determined by the ability of these cells to retain rod-shaped morphology and to exclude trypan blue. The mean life time of myocytes was quantitated using the Weibull distribution function. Superfusion with 200 M tert-butyl hydroperoxide (t-BHP) led to a time-dependent loss of cell viability, generation of the products of lipid peroxidation, oxidation of protein and non-protein thiols, a decrease in [ATP]i and in the cellular energy charge. Dithiothreitol (DTT, 5 mM) prolonged survival of myocytes exposed to t-BHP, attenuated oxidation of protein and non-protein thiols, and preserved the energy charge. Exposure to DTT did not affect the concentration of t-BHP-generated lipid peroxidation products. Promethazine (1 M) prevented t-BHP-induced increase in the concentration of lipid peroxidation products, but did not prevent either loss of thiols or loss of cell viability. Superfusion with N-ethylmaleimide (NEM, 5 M) also led to loss of cell viability, with accompanying decreases in protein and non-protein thiols, ATP and energy charge without the accumulation of the products of lipid peroxidation. Superfusion with FeSO4 (400 M) and ascorbate (1 mM), (Fe-Asc) did not result in loss of cell viability or a decrease protein thiols or the energy charge. Superfusion with Fe-Asc, did, however, lead to a slight decrease in the concentration of non-protein thiols and ATP and a large increase in the concentration of lipid peroxidation products. Accumulation of lipid peroxidation products induced by Fe-Asc was prevented by promethazine. These results indicate that free radical-induced irreversible cell injury results from a loss of protein thiols. Changes in the cellular energy charge and lipid peroxidation do not bear a simple relationship to the survival of cardiac myocytes under oxidative stress.  相似文献   

4.
Effects of melanins obtained from cultured Cladosporium cladosporidae fungi and Alpha grape on Fe2+-induced, Fe2+–ascorbate-induced, and NADPH-induced lipid peroxidation in rat liver, brain, and eye were studied. Melanins were shown to inhibit the accumulation of lipid peroxidation products in vitro. The inhibitory effects of melanins were not due to direct interactions of these pigments with superoxide anion (O 2 ). However, melanins may interact with other free radicals. Melanins were demonstrated to have the ability to oxidize NADPH, which is probably one of the mechanisms of their antioxidant effects.  相似文献   

5.
It is shown that skin burn is accompanied by activation of lipid peroxidation (accumulation of TBA-reactive substances and of fluorescent end-products) in the blood of experimental animals. The decrease in red blood cell membrane stability was demonstrated exerting as increase in the rate of spontaneous hemolysis, content of extraerythrocyte++ haemoglobin and increased sensitivity to exogenous oleic acid. It is estimated that alpha-tocopherol possesses protective stabilizing effect on red blood cell membrane. This stabilizing action is observed when alpha-tocopherol was injected both before the skin burn and immediately after it. It is concluded that two different mechanisms are responsible for stabilizing effect of tocopherol, namely: 1) antiradical, realized via inhibition of lipid peroxidation, and 2) non-antioxidant, caused by interaction of tocopherol with phospholipid hydrolysis products by phospholipases A2 (free fatty acids and lysophospholipids).  相似文献   

6.
Effects of Schisandrin B (Sch B) and -tocopherol (-TOC) on ferric chloride (Fe3+) induced oxidation of erythrocyte membrane lipids in vitro and carbon tetrachloride (CCl4) induced lipid peroxidation in vivo were examined. While -TOC could produce prooxidant and antioxidant effect on Fe3+-induced lipid peroxidation, Sch B only inhibited the peroxidation reaction. Pretreatment with -TOC (3 mmol/kg/day × 3) did not protect against CCl4-induced lipid peroxidation and hepatocellular damage in mice, whereas Sch B pretreatment (0.3 mmol/3.0 mmol/kg/day × 3) produced a dose-dependent protective effect on the CCl4-induced hepatotoxicity. The ensemble of results suggests that the ability of Sch B to inhibit lipid peroxidation, while in the absence of pro-oxidant activity, may at least in part contribute to its hepatoprotective action.Abbreviations ALT alanine aminotransferase - CCl4 carbon tetrachloride - Fe3+ ferric chloride - MDA malondialdehyde - Sch B Schisandrin B - TBA 2-thiobarbituric acid - TBARS thiobarbituric acid reactive substances - -TOC dl--tocopherol  相似文献   

7.
Quinolinic acid is a potent lipid peroxidant in rat brain homogenates   总被引:7,自引:0,他引:7  
In this study, we describe the lipoperoxidative effect of quinolinic acid (QUIN) in vitro. The formation of thiobarbituric acid reactive products (TBA-RP), an index of lipid peroxidation, was measured in rat brain homogenates after incubation at 37°C for 30 min in the presence of QUIN and some structurally and metabolically related compounds such as Kynurenine, Kynurenic acid, Glutamate, Aspartate and Kainate. Concentrations of QUIN in the range of 20 to 80 M increased lipid peroxidation in a concentration-dependent manner from about 15% to about 50%. Kynurenic acid, a compound metabollically related to QUIN that can block its neurotoxic actions in vivo, also inhibited completely the QUIN-induced TBA-RP formation in our system. Lipid fluorescent material, another index of lipid peroxidation was also found increased by 49% after incubation with 40 M QUIN. It is concluded that lipid peroxidation may be a damaging process involved in the neurotoxicity of QUIN.  相似文献   

8.
Summary Ultrasonic radiation produced a dose dependent linear increase in lipid peroxidation (MDA formation) in the liposomal membrane. The yield of MDA was significantly inhibited by butylated hydroxytoluene (BHT), the antioxidant, sodium formate, the OH radical scavenger, and EDTA, the metal ion chelator. Ascorbic acid at low concentration increased the ultrasonic induced MDA formation while high concentrations inhibited lipid peroxidation. A mechanism of ultrasound induced lipid peroxidation is suggested.  相似文献   

9.
We studied effects of gangliosides on the level of lipid peroxides and microviscosity of membrane lipid bilayer in primary dissociated cultures of cerebellar granule cells prepared from 8 day-old rats under conditions of neurotoxic effect of glutamate. It was found that glutamate (100 mkM) treatment of primary cultures activated the processes of lipid peroxidation and decreased microviscosity of neuronal membranes determined as a degree of pyrene excimerization. It was also shown that preincubation of granule cells with gangliosides did not prevent the accumulation of TBA-reactive products induced by glutamate. At the same time gangliosides significantly decreased the membrane-fluidizing effect caused by glutamate.  相似文献   

10.
Jiao  Demao  Ji  Benhua  Li  Xia 《Photosynthetica》2003,41(1):33-41
With japonica rice 98-08, indica hybrids Shanyou 63, Gangyou 881, and X07S/Zihui 100, and sub-species hybrid Peiai 64S/9311 as materials, chlorophyll (Chl) content, Chl a fluorescence parameters, and membrane lipid peroxidation in flag leaf were measured at late developmental stages under natural conditions. Fv/Fm, qP, PS2, and electron transport rate gradually decreased while qN increased conversely. Excessive photon energy led to the accumulation of active oxygen (O2 ), H2O, malonyldialdehyde, and products of membrane lipid peroxidation, and resulted in reduced Chl content and early ageing subsequent to the photooxidation during flag leaf senescence. There was obvious diversification of these parameters among rice cultivars. In comparison with japonica cv. 98-08 (tolerant to photooxidation), Fv/Fm decreased in indica cv. Shanyou 63 (susceptible to photooxidation) with greater accumulation of active oxygen and a sharp drop in Chl content, which resulted in yellowish early ageing, and affected the filling and setting of rice grains. The mechanism for premature ageing in indica rice was related to irradiance and temperature at filling stages. On a sunny day at above 25 °C, the reaction centre of photosystem 2 (PS2) exhibited a dynamic change on reversible inactivation. Under the intense irradiance at noon, PS2 function in indica rice exhibited obvious down-regulation and photoinhibition. Under intense irradiance with lowered temperatures, PS2 resulted in photo-damage and early ageing, related to the degradation of PS2-D1 protein and the inhibition of endogenous protection systems such as the xanthophyll cycle and enzymes scavenging active oxygen. Hence for high-yield breeding, based on a good plant-type and utilising heterosis and tolerance of photooxidation, the selection of japonica rice or a sterile line with the japonica genotype as female is a strategy worthy of consideration.  相似文献   

11.
The relevance of porphyrins as therapeutic drugs targeted to mitochondria has been widely recognized. In this work, we studied the action of meso-tetrakis porphyrins (TMPyP) on respiring rat liver mitochondria. Mn(III)TMPyP exerted a protective effect against lipid peroxidation induced by Fe(II) or the azo initiator 4,4-azobis(4-cyanopentanoic acid) (ABCPA), which partition in the hydrophobic phospholipid moiety, and 2,2-azobis(2-amidinepropane)dihydrochloride (ABAP), which partitions in the aqueous phase. In contrast, Fe(III)TMPyP itself induced an intense lipid peroxidation, accompanied by mitochondrial permeability transition. Both mesoporphyrins studied promoted a release of mitochondrial state-4 respiration, in the concentration range of 1.0–20 M. Based on the relative effects of Mn(III)TMPyP against ABAP and ABCPA-induced lipid peroxidation, we believe that meso-tetrakis porphyrins must concentrate preferably at membrane–water interfaces.  相似文献   

12.
In the present study it was investigated if a-tocopherol shows protection against in vitro lipid peroxidation of phospholipids located in rod outer segment membranes (ROS). After incubation of ROS in an ascorbate-Fe2+ system, at 37°C during 160 min, the total cpm originated from light emission (chemiluminescence) was found to be lower in those membranes incubated in the presence of -tocopherol. The fatty acid composition of total lipids isolated from rod outer segment membranes was substantially modified when subjected to non-enzymatic lipid peroxidation with a considerable decrease of docosahexaenoic acid (22:6 n-3). The incorporation of -tocopherol (0.35 mol/mg protein) produce a 43.37% inhibition of the lipid peroxidation process evaluated as chemiluminiscence (total cpm originated in 160 min). The phospholipid species containing the highest amount of docosahexaenoic acid: phosphatidyletanolamine and phosphatidylserine were more affected than phosphatidylcholine during the lipid peroxidation process. Not all phospholipids, however, were equally protected after the addition of -tocopherol to the incubation medium. Phosphatidylcholine and phosphatidyletanolamine, were not protected by -tocopherol, the vitamin provides selective antioxidant protection only for phosphatidylserine. These results indicate that -tocopherol may act as antioxidant protecting rod outer segment membranes from deleterious effect by a selective mechanism that diminishes the loss of docosahexaenoic acid from phosphatidylserine.  相似文献   

13.
The effect of-irradiated solutions of carbohydrates, mainly glucose, upon Na+, K+-ATPase and lipid peroxidation in rat brain synaptosomal membranes was studied. The membrane damage by irradiated glucose was enhanced in the presence of Fe2+ and was diminished when a free-radical scavenger (BHT) or metal chelators (EDTA, EGTA) were present. It is suggested that a key element in the free-radical membrane damage by irradiated carbohydrates is an Fe2+-complex of some species of the radiolysis products. Participation of radiotoxins of carbohydrate origin in radiobiological effects is discussed.  相似文献   

14.
The effect of lipid peroxidation on the Mg2+-independent and Mg2+-dependent activity of brain cell membrane 5-nucleotidase was determined and the affinity of the active sites of Mg2+-dependent enzyme for 5-AMP (substrate) and Mg2+ (activator) was examined. Brain cell membranes were peroxidized at 37°C in the presence of 100 M ascorbate and 25 M FeCl2 (resultant) for 10 min. The activity of 5-nucleotidase and lipid peroxidation products (thiobarbituric acid reactive substances) were determined. At 10 min, the level of lipid peroxidation products increased from 0.20±0.10 to 17.5±1.5 nmoles malonaldehyde/mg membrane protein. The activity of Mg2+-independent 5-nucleotidase increased from 0.201±0.020 in controls to 0.305±0.028 mol Pi/mg protein/hr in peroxidized membranes. In the presence of 10mM Mg2+, the activity increased by 5.8-fold in the peroxidized membrane preparation in comparison to 14-fold in control In peroxidized preparation, the affinity of active site of Mg2+-dependent 5-nucleotidase for 5-AMP tripled, as indicated by a significant decrease inK m (K m=95±2 M AMP for control;K m=32±2 MAMP for peroxidized).V max was significantly reduced from 3.35±0.16 in control to 1.70±.09 moles Pi/mg protein in peroxidized membranes. The affinity of the active site for Mg2+ significantly increased (K m=6.17±0.37 mM Mg2+ for control;K m=4.0±0.31 peroxidized). The data demonstrate that lipid peroxidation modifies the Mg2+-dependent 5-nucleotidase function by altering the active sites for both the substrate and the activator. The modification of the 5-nucleotidase activity and the loss of Mg2+-dependent activation observed in this in-vitro study are similar to the changes previously observed by us in the hypoxic brain in-vivo. This suggests that lipid peroxidation which specifically alters the active site may be the underlying mechanism of the modification of 5-nucleotidase during hypoxia.  相似文献   

15.
The effects of ascorbate and a-tocopherol as antioxidants and as co-operative factors against NADPH-dependent lipid peroxidation in human placental mitochondria have been studied. The addition of ascorbate at low concentration (up to 50 M) to the NADPH-generating system resulted in increasing lipid peroxidation and Fe3+ to Fe2+ reduction. High concentration of ascorbate (150 M), which produced maximal rate of ascorbate-dependent lipid peroxidation, was found to inhibit almost completely NADPH-dependent lipid peroxidation by maintaining too much iron in its reduced form. Either stimulatory or inhibitory effect of ascorbate on NADPH-dependent lipid peroxidation depends on the appropriate Fe3+/Fe2+ ratio. -Tocopherol caused a decrease of NADPH-dependent lipid peroxidation, inhibiting completely this process at 150 M concentration. The inhibitory effect of -tocopherol increased rapidly with the increasing ascorbate concentration, almost complete inhibition of NADPH-dependent lipid peroxidation being obtained at 25 M -tocopherol and 50 M ascorbate. This strong inhibitory combined effect of -tocopherol and ascorbate was independent of the Fe3+/Fe2+ ratio, as a-tocopherol is not able to reduce Fe3+ to Fe2+ under the conditions employed. These findings suggest that antioxidant effects of ascorbate in placental mitochondria are mediated by recycling of a-tocopherol rather than by strong reduction of Fe3+ to Fe2+. On the basis of the results obtained, we assume that adequate concentrations of a-tocopherol and ascorbate in placental tissue may prevent the release of lipid peroxide from placental mitochondria and therefore could be protective against the development of preeclampsia.  相似文献   

16.
Huang  Chuanshu  Li  Jingxia  Ding  Min  Wang  Liying  Shi  Xianglin  Castranova  Vincent  Vallyathan  Val  Ju  Gong  Costa  Max 《Molecular and cellular biochemistry》2001,225(1-2):29-34
Carnosine, a alanylLhistidine dipeptide with antioxidant properties is present at high concentrations in skeletal muscle tissue. In this study, we report on the antioxidant activity of carnosine on muscle lipid and protein stability from both in vitro and in vivo experiments. Carnosine inhibited lipid peroxidation and oxidative modification of protein in muscle tissue prepared from rat hind limb homogenates exposed to in vitro Fenton reactant (Fe2+, H2O2)generated free radicals. The minimum effective concentrations of carnosine for lipid and protein oxidation were 2.5 and 1 mM, respectively. Histidine and alanine, active components of carnosine, showed no individual effect towards inhibiting either lipid or protein oxidation. Skeletal muscle of rats fed a histidine supplemented diet for 13 days exhibited a marked increase in carnosine content with a concomitant reduction in muscle lipid peroxidation and protein carbonyl content in skeletal muscle caused by subjecting rats to a Fenitrilotriacetate administration treatment. This significant in vitro result confirms the in vivo antioxidant activity of carnosine for both lipid and protein constituents of muscle under physiological conditions.  相似文献   

17.
《Free radical research》2013,47(1-5):107-115
The storage of rabbit kidneys for 24hr at 0 C in isotonic saline resulted in significantly increased rates of lipid peroxidation, as measured by the formation of thiobarbituric acid-reactive material and Schiff bases during in vitro incubation of homogenates prepared from the cortex and medulla. In addition, the content of thiobarbituric acid-reactive material in the medulla was also significantly elevated as a result of cold storage for 24 hr.

The effects of antioxidants (vitamin E), iron-chelation (desferoxamine) and inhibitors of arachidonic acid oxidation (indomethacin and dazmegrell on the rate of lipid peroxidation in homogenates prepared from ischaemic kidneys were studied. This demonstrated that lipid peroxidation in the cortex was predominantly non-specific and iron-catalysed whereas in the medulla approximately 50% of the TBA-reactive material was formed enzymically from arachidonic acid by cyclooxygenase.  相似文献   

18.
Ammonium ion accumulation and the decrease in glutamine synthetase (GS)activity induced by CdCl2 were investigated in relation to lipidperoxidation in detached rice leaves. CdCl2 was effective inincreasing ammonium ion content, decreasing GS activity and increasing lipidperoxidation. Free radical scavengers (glutathione, thiourea, sodium benzoate)and an iron chelator (2,2-bipyridine) were able to inhibit the decreasein GS activity and ammonium ion accumulation caused by CdCl2 and atthe same time inhibit CdCl2-induced lipid peroxidation. Paraquat,which is known to produce oxygen radicals, decreased GS activity, increasedammonium ion content, and increased lipid peroxidation. GS1 appears to be thepredominant isoform present. Excess Cd caused a decrease in GS1 but not in GS2in detached rice leaves. An increase in lipid peroxidation preceded ammoniumionaccumulation and the decrease in GS1 activity. These results suggest that thedecrease in GS activity and the accumulation of ammonium ions in detached riceleaves are a consequence of oxidative damage caused by excess Cd.  相似文献   

19.
The ability of sodium arsenite at concentrations of 10–2, 10–4, and 10–6 M to induce lipid peroxidation in Saccharomyces cerevisiae cells was studied. Arsenite at the concentrations 10–2 and 10–4 M enhanced lipid peroxidation and inhibited the growth of yeast cells. Enhanced lipid peroxidation likely induced oxidative damage to various cellular structures, which led to suppression of the metabolic activity of cells. Arsenite at the concentration 10–6 M did not activate lipid peroxidation in cells. All of the tested arsenite concentrations inhibited the activity of -ketoglutarate dehydrogenase and pyruvate dehydrogenase in cells. The inference is made that the toxicity of arsenite may be related to its stimulating effect on intracellular lipid peroxidation.  相似文献   

20.
Lipid peroxidation in vitro homogenates of brain was examined as sequela of lead toxicity. The levels of malondialdehyde (MDA) in homogenates of rat brain (1 ml, 5% w/v) treated with lead (50 g) alone or in combination with ascorbic acid (100 g), alphatocopherol (100 g) or hydroquinone (100 g) were evaluated. The levels of MDA were consistently evoked by lead in a dose-related manner. The toxicity of lead was further advanced by the action of the pro-oxidant drug ascorbic acid on the brain. However, the anti-oxidant drugs alphatocopherol and hydroquinone decreased the toxic effect of lead on the brain. These results clearly show that the enhanced lipid peroxidation may provide a basis of lead-induced neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号