首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Snetselaar, K. M., Bolker, M., and Kahmann, R. 1996. Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genetics and Biology 20, 299-312. When small drops of Ustilago maydis sporidia were placed 100-200 μm apart on agar surfaces and covered with paraffin oil, sporidia from one drop formed thin hyphae that grew in a zig-zag fashion toward the other drop if it contained sporidia making the appropriate pheromone. For example, a2b2 mating hyphae grew toward a1b1 and a1b2 mating hyphae, and the filaments eventually fused tip to tip. Time-lapse photography indicated that the mating hyphae can rapidly change orientation in response to nearby compatible sporidia. When exposed to pheromone produced by cells in an adjacent drop, haploid sporidia with the a2 allele began elongating before sporidia with the a1 allele. Sporidia without functional pheromone genes responded to pheromone although they did not induce a response, and sporidia without pheromone receptors induced formation of mating hyphae although they did not form mating hyphae. Diploid sporidia heterozygous at b but not at a formed straight, rigid, aerial filaments when exposed to pheromone produced by the appropriate haploid sporidia. Again, the a2a2b1b2 strain formed filaments more quickly than the a1a1b1b2 strain. Taken together, these results suggest that the a2 pheromone diffuses less readily or is degraded more quickly than the a1 pheromone.  相似文献   

2.
Thea mating type locus ofUstilago maydis contains the structural genes for a pheromone-based cell recognition system that governs fusion of haploid cells. The locus exists in two alleles, termeda1 anda2. We have completed the analysis of the nucleotide sequences unique toa1 anda2. Within these dissimilar regions we find two short patches of DNA sequence similarity. Interestingly, one of these segments corresponds to the transcribed region of thea1 pheromone precursor. As a result of multiple nucleotide exchanges this sequence does not code for a functional product. The existence of a second pheromone gene in thea2 allele suggests that the present locus had a multiallelic ancestor. In addition, we describe the presence of two additional genes in thea2 allele. We have investigated the role of these genes during mating and pathogenic development and speculate that they might affect mitochondrial inheritance.  相似文献   

3.
Weber I  Gruber C  Steinberg G 《The Plant cell》2003,15(12):2826-2842
In the early stages of plant infection, yeast-like haploid sporidia of Ustilago maydis respond to pheromone secreted by compatible partners by forming conjugation tubes. These then fuse to generate a dikaryotic hypha that forms appressoria to penetrate the host plant. As a first step toward understanding the structural requirements for these transitions, we have identified myo5, which encodes a class-V myosin. Analysis of conditional and null mutants revealed that Myo5 plays nonessential roles in cytokinesis and morphogenesis in sporidia and is required for hyphal morphology. Consistent with a role in morphogenesis, a functional green fluorescent protein-Myo5 fusion protein localized to the bud tip and the hyphal apex as well as to the septa and the spore wall during later stages of infection. However, the loss of Myo5 did not affect the tip growth of hyphae and sporidia. By contrast, Myo5 was indispensable for conjugation tube formation. Furthermore, myo5 mutants were impaired in the perception of pheromones, which indicates a particular importance of Myo5 in the mating process. Consequently, few mutant hyphae were formed that penetrated the plant epidermis but did not continue invasive growth. These results indicate a crucial role of Myo5 in the morphogenesis, dimorphic switch, and pathogenicity of U. maydis.  相似文献   

4.
In the corn smut fungus Ustilago maydis, pathogenic development is initiated when two compatible haploid cells fuse and form the infectious dikaryon. Mating is dependent on pheromone recognition by compatible cells. In this report, we set out to evaluate the relationship between the cell cycle and the pheromone response in U. maydis. To achieve this, we designed a haploid pheromone-responsive strain that is able to faithfully reproduce the native mating response in nutrient-rich medium. Addition of synthetic pheromone to the responsive strain induces the formation of mating structures, and this response is abolished by mutations in genes encoding components of the pheromone signal transduction cascade. After recognition of pheromone, U. maydis cells arrest the cell cycle in a postreplicative stage. Visualization of the nucleus and microtubule organization indicates that the arrest takes place at the G2 phase. Chemical-induced cell cycle arrest and release in the presence of pheromone further support this conclusion.  相似文献   

5.
Thea mating type locus ofUstilago maydis contains the structural genes for a pheromone-based cell recognition system that governs fusion of haploid cells. The locus exists in two alleles, termeda1 anda2. We have completed the analysis of the nucleotide sequences unique toa1 anda2. Within these dissimilar regions we find two short patches of DNA sequence similarity. Interestingly, one of these segments corresponds to the transcribed region of thea1 pheromone precursor. As a result of multiple nucleotide exchanges this sequence does not code for a functional product. The existence of a second pheromone gene in thea2 allele suggests that the present locus had a multiallelic ancestor. In addition, we describe the presence of two additional genes in thea2 allele. We have investigated the role of these genes during mating and pathogenic development and speculate that they might affect mitochondrial inheritance.  相似文献   

6.
7.
InUstilago maydis thea andb mating type loci control pathogenicity as well as sexual development. We review the function of these loci in controlling the cell fusion step, the switch from yeast-like to filamentous growth and subsequent pathogenic development. Our special emphasis will be the role of pheromones and pheromone signaling in these processes.  相似文献   

8.
Ustilago maydis is able to initiate pathogenic development after fusion of two haploid cells with different mating type. On the maize leaf surface, the resulting dikaryon switches to filamentous growth, differentiates appressoria and penetrates the host. Here, we report on the plant signals required for filament formation and appressorium development in U. maydis. In vitro , hydroxy-fatty acids stimulate filament formation via the induction of pheromone genes and this signal can be bypassed by genetically activating the downstream MAP kinase module. Hydrophobicity also induces filaments and these resemble the dikaryotic filaments formed on the plant surface. With the help of a marker gene that is specifically expressed in the tip cell of those hyphae that have formed an appressorium, hydrophobicity is shown to be essential for appressorium development in vitro . Hydroxy-fatty acids or a cutin monomer mixture isolated from maize leaves have a stimulatory role when a hydrophobic surface is provided. Our results suggest that the early phase of communication between U. maydis and its host plant is governed by two different stimuli.  相似文献   

9.
《Experimental mycology》1993,17(3):200-214
Martinez-Espinoza, A. D., Gerhardt, S. A., and Sherwood, J. E. 1993. Morphological and mutational analysis of mating in Ustilago hordei. Experimental Mycology 17, 200-214. Ustilago hordei is a basidiomycete that causes covered smut on barley. Mating in U. hordei, which is controlled by a single locus with two alleles, results in the conversion of haploid, nonpathogenic yeast-like sporidia to dikaryotic, pathogenic mycelia. When sporidia of the opposite mating type were mixed and placed on water agar, both cell types produced conjugation tubes within 2 h at 21°C. Growth of conjugation tubes was directed toward the tip of tubes arising from cells of the opposite mating type. These tubes fused and the dikaryotic mycelium emerged from the conjugation bridge. Sporidia separated by a dialysis membrane were still capable of inducing conjugation tube formation by cells of the opposite mating type, indicating the involvement of diffusible small-molecular-weight mating factors (pheromones). Numerous nutritional and environmental variables were examined in order to optimize conjugation tube induction. Twenty-six mutants that fail to form dikaryotic mycelium have been isolated and characterized. These mutants were arranged into classes based on their ability to form conjugation tubes, the ability to induce conjugation tube formation by opposite mating-type cells, and cell morphology. These mutants provide an indication of the genetic complexity involved in this critical phase of the U. hordei life cycle.  相似文献   

10.
We describe a versatile strategy for generating gene replacement mutants in the phytopathogenic fungus Ustilago maydis. The system includes the choice of 32 different insertion cassettes for genetic engineering purposes, such as gene disruption and more sophisticated insertions of reporter genes, heterologous promoters or combinations of the two. PCR-amplified flanking sequences needed for homologous recombination are ligated to the respective insertion cassettes via Sfi I sites. As proof of principle we generated two replacement mutants in which the endogenous promoter of the pheromone gene mfa1 drives expression of the Green Fluorescent Protein gene (gfp). Simultaneously, expression of the mfa1 ORF is controlled either by the carbon source-regulated crg1 promoter or the nitrogen source-regulated nar1 promoter. In both cases gfp expression was pheromone-inducible and pheromone expression was only detected when the heterologous promoters were active.Communicated by G. JürgensThe first two authors contributed equally to this work  相似文献   

11.
In the corn smut fungus Ustilago maydis, mating of two haploid sporidia is a prerequisite for subsequent colonization of the host. Cyclic AMP (cAMP) and pheromone signals have been implicated in this developmental program. The cAMP pathway is also needed for subsequent fungal development in planta, as null mutants in any component of the pathway fail to form tumors. Here we show that moderate activation of the pathway conferred either by mutation in the Galpha subunit or by mutation in the regulatory subunit of the protein kinase A influences tumor morphology. In the resulting tumors, the amount of fungal material is drastically reduced and fungal development is arrested at the stage of sporogenic hyphae. We conclude that tight regulation of the cAMP pathway is crucial for fungal development within the plant but does not interfere with the tumor induction process.  相似文献   

12.
In the phytopathogenic basidiomycete Ustilago maydis mating and dikaryon formation are controlled by a pheromone/receptor system and the multiallelic b locus. Recently, a gene encoding a G protein α subunit, gpa3, was isolated and has subsequently been implicated in pheromone signal transduction. Mutants deleted for gpa3 are sterile and nonpathogenic, and exhibit a morphology that is similar to that of mutants with defects in the adenylate cyclase gene uac1. We have found that the sterility and mutant morphology of gpa3 deletion strains can be rescued by exogenous cAMP. In these mutants and in the corresponding wild-type strains, exogenous cAMP stimulates pheromone gene expression to a level comparable to that seen in the pheromone-stimulated state. In addition, we demonstrate that uac1 is epistatic to gpa3. We conclude that Gpa3 controls the cAMP signalling pathway in U.maydis and discuss how this pathway feeds into the pheromone response. Received: 4 May 1998 / Accepted: 24 July 1998  相似文献   

13.
Ustilago maydis is a model organism for the study of biotrophic plant–pathogen interactions. The sexual and pathogenic development of the fungus are tightly connected since fusion of compatible haploid sporidia is prerequisite for infection of the host plant, maize (Zea mays). After plant penetration, the unfolded protein response (UPR) is activated and required for biotrophic growth. The UPR is continuously active throughout all stages of pathogenic development in planta. However, since development of UPR deletion mutants stops directly after plant penetration, the role of an active UPR at later stages of development remained to be determined. Here, we established a gene expression system for U. maydis that uses endogenous, conditionally active promoters to either induce or repress expression of a gene of interest during different stages of plant infection. Integration of the expression constructs into the native genomic locus and removal of resistance cassettes were required to obtain a wild-type-like expression pattern. This indicates that genomic localization and chromatin structure are important for correct promoter activity and gene expression. By conditional expression of the central UPR regulator, Cib1, in U. maydis, we show that a functional UPR is required for continuous plant defence suppression after host infection and that U. maydis relies on a robust control system to prevent deleterious UPR hyperactivation.  相似文献   

14.
Accumulation of 14α-methylated sterols or Δ8-sterols in Ustilago maydis affected three aspects of the plasma membrane H+-ATPase. Proton transport was reduced in Δ8-sterol-accumulating samples, due to an altered H+/ATP stoichiometry. ATP hydrolytic activity was increased, but no direct correlation with the extent or type of abnormal sterol accumulated could be drawn. Finally, Western blot analysis with antibodies against yeast PMA1 revealed a second lighter band (99-kDa band) in all samples from abnormal-sterol-accumulating sporidia. The conclusions are that the 99-kDa band and a reduced stoichiometry are directly linked to the presence of abnormal sterols, while changes in hydrolytic activity are linked only indirectly.  相似文献   

15.
The basidiomycete Ustilago maydis, the causative agent of corn smut disease, has emerged as a model organism for dimorphism and fungal phytopathogenicity. In this work, we line out the key conserved enzymes for β-carotene biosynthesis encoded by the U. maydis genome and show that this biotrophic fungus accumulates β-carotene. The amount of this pigment depended on culture pH and aeration but was not affected by light and was not increased by oxidative stress. Moreover, we identified the U. maydis gene, cco1, encoding a putative β-carotene cleavage oxygenase. Heterologous overexpression and in vitro analyses of purified enzyme demonstrated that Cco1 catalyzes the symmetrical cleavage of β-carotene to yield two molecules of retinal. Analyses of β-carotene and retinal contents in U. maydis cco1 deletion and over-expression strains confirmed the enzymatic function of Cco1, and revealed that Cco1 determines the β-carotene content. Our data indicate that carotenoid biosynthesis in U. maydis is carried out to provide retinal rather than to deliver protective pigments. The U. maydis genome also encodes three potential opsins, a family of photoactive proteins that use retinal as chromophore. Two opsin genes showed different light-regulated expression patterns, suggesting specialized roles in photobiology, while no mRNA was detected for the third opsin gene in the same experiments. However, deletion of the cco1 gene, which should abolish function of all the retinal-dependent opsins, did not affect growth, morphology or pathogenicity, suggesting that retinal and opsin proteins play no relevant role in U. maydis under the tested conditions.  相似文献   

16.
17.
李智敏  严理  严准 《微生物学报》2016,56(9):1385-1397
玉米瘤黑粉病是由担子菌Ustilago maydis对玉米的活体寄生所引起的真菌病害。该病原菌为双相型真菌,需要寄生于玉米植株来完成其有性生殖过程。综合相关研究报道,本文把U.maydis对寄主植物的寄生过程划分为7个阶段,包括形成致病性双核菌丝体、附着寄主植物表面、穿透寄主表皮、消减寄主防御反应、在寄主体内菌丝增殖、使寄主瘤变和生成厚垣孢子等。围绕寄生进程特点和关键基因,分别阐述了各个阶段的相关调控机制以及对寄主植物的致病性;展现了U.maydis为达到有性生殖目的而实施步步为营的寄生策略。本文对U.maydis寄生过程的阶段划分,有助于人们深入了解U.maydis与寄主植物之间互作机制、提供相关病害防控新思路。  相似文献   

18.
Association of messenger RNAs with large complexes such as processing bodies (PBs) plays a pivotal role in regulating their translation and decay. Little is known about other possible functions of these assemblies. Exposure of haploid yeast cells, carrying mating type “a,” to “α pheromone” stimulates polarized growth resulting in a “shmoo” projection; it also induces synthesis of “a pheromone,” encoded by MFA2. In this paper, we show that, in response to α pheromone, MFA2 mRNA is assembled with two types of granules; both contain some canonical PB proteins, yet they differ in size, localization, motility, and sensitivity to cycloheximide. Remarkably, one type is involved in mRNA transport to the tip of the shmoo, whereas the other—in local translation in the shmoo. Normal assembly of these granules is critical for their movement, localization, and for mating. Thus, MFA2 mRNAs are transported to the shmoo tip, in complex with PB-like particles, where they are locally translated.  相似文献   

19.
The α-factor mating pheromone induces a transient intracellular alkalinizatin of MATa cells within minutes after exposure to the pheromone, and is the earliest biochemical event that can be identified subsequent to the exposure. Dissipation of the pheromone induced pH gradient, using 2,4-dinotrophenol or sodium orthovanadate, does not inhibit the biological response of the yeast to the pheromone such as mating and ‘schmoo’ formation. These findings suggest that the pheromone mediated pH change per se is not a part of the transmembrane signalling but rather the consequence of a biochemical reaction triggered by the α-pheromone interaction with its receptor and may have a permissive effect on the pheromonal response. The cdc25ts mutation causes MATa cells to become nonresponsive to α-factor subsequent to a shift to the restrictive temperature, suggesting that the CDC25 gene product participates in the pheromone response pathway.  相似文献   

20.
The infection of maize (Zea mays) by the basidiomycete fungus Ustilago maydis leads to common smut of corn characterized by the production of tumors in susceptible aboveground plant tissues. LC-(ES)MS/MS profiles of abscisic acid (ABA) and 12 different cytokinins (CKs) were determined for infected and uninfected maize tissues over a time course following fungal exposure. Samples were taken at points corresponding to the appearance of disease symptoms. Axenic cultures of haploid and dikaryon forms of U. maydis were also profiled. This study confirmed the capability of Ustilago maydis to synthesize CKs, ABA, and auxin (IAA). It also provided evidence for the involvement of CK and ABA in the U. maydis-maize infection process. Significant quantities of CKs and ABA were detected from axenic cultures of U. maydis as was IAA. CKs and ABA levels were elevated in leaves and stems of maize after infection; notable was the high level of cis-zeatin 9-riboside. Variation among hormone profiles of maize tissues was observed at different time points during infection and between infections with nonpathogenic haploid and pathogenic dikaryon strains. This suggested that CKs and ABA accumulate and are likely metabolized in maize tissue infected with U. maydis. Because U. maydis produced these phytohormones at significant levels, it is possible that the fungal pathogen is a source of these compounds in infected tissue. This is the first study to confirm the production of CKs and document the production of ABA by U. maydis. This study also established an involvement of these phytohormones and a possible functional role for ABA in U. maydis infection of maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号