首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adler PN  Holt CE 《Genetics》1977,87(3):401-420
Rare plasmodia formed in clones of heterothallic amoebae were analyzed in a search for mutations affecting plasmodium formation. The results show that the proportion of mutants varies with both temperature (18°, 26° or 30°) and mating-type allele (mt1, mt2, mt3, mt4). At one extreme, only one of 33 plasmoida formed by mt2 amoebae at 18° is mutant. At the other extreme, three of three plasmodia formed by mt1 amoebae at 30° are mutant. The mutant plasmodia fall into two groups, the GAD (greater asexual differentiation) mutants and the ALC (amoebaless life cycle) mutants. The spores of GAD mutants give rise to amoebae that differentiate into plasmodia asexually at much higher frequencies than normal heterothallic amoebae. Seven of eight gad mutations analyzed genetically are linked to mt and one (gad-12) is not. The gad-12 mutation is expressed in strains with different alleles of mt. The frequency of asexual plasmodium formation is heat sensitive in some (e.g., mt3 gad-11 ), heat-insensitive in two (mt2 gad-8 and mt2 gad-9) and cold-sensitive in one (mt1 gad-12) of twelve GAD mutants analyzed phenotypically. The spores of ALC mutants give rise to plasmodia directly, thereby circumventing the amoebal phase of the life cycle. Spores from five of the seven ALC mutants give rise to occasional amoebae, as well as plasmodia. The amoebae from one of the mutants carry a mutation (alc-1) that is unlinked to mt and is responsible for the ALC phenotype in this mutant. Like gad-12, alc-1 is expressed with different mt alleles. Preliminary observations with amoebae from the other four ALC mutants suggest that two are similar to the one containing alc-1; one gives rise to revertant amoebae, and one gives rise to amoebae carrying an alc mutation and a suppressor of the mutation.  相似文献   

2.
The conversion of the uninucleate amoebal form of Physarum polycephalum to the multi-nucleate plasmodial form is under the control of a genetic region which contains matA (or mt), a determinant of mating specificity. The region is the site of most gad mutations, which give amoebae the ability to produce plasmodia in clones without mating (ie, to self). In the present study, nonselfing revertants were isolated from two matA2-derived gad mutants and two matA3-derived gad mutants. Some revertants were found to have regained exactly, or nearly, the same phenotype as the original matA2 or matA3 strain. Others expressed new mating types, having gained the ability to mate with strains of the parental matA type. The results are compatible with a model in which new mating types arise from forward mutations (gad) and back mutations (npf or no plasmodium formation) occurring successively in a single gene, matA.  相似文献   

3.
SYNOPSIS. The life cycle of the true slime mold Physarum polycephalum includes 2 vegetative stages: the multinucleate coenocytic plasmodium and the uninucleate amoeba. A clone of amoebae established from a single spore does not normally yield plasmodia. Plasmodia are formed when amoebae from particular clones are mixed; thus plasmodium formation is said to be controlled by a ‘mating-type’ system. Previous work by the author with a sample of P. polycephalum derived from a single source revealed that 2 mating types were present and were determined by a pair of alleles at 1 locus. The present paper reveals the presence of 2 more mating types in a sample of P. polycephalum derived from a different source and provides evidence that these are determined by 2 alleles at the same locus as the other 2. Evidence for the presence of other inherited factors affecting plasmodium formation, the mode of action of these factors and possible explanations for the occurrence of plasmodia in single-spore cultures are also discussed.  相似文献   

4.
In the acellular slime mold, Physarum polycephalum, the differentiation of amoebae into plasmodia is controlled by a mating type locus, mt. Amoebae carrying heterothallic alleles usually do not differentiate within clones; plasmodia form when two amoebae carrying different alleles fuse and undergo karyogamy. In this paper, we show that amoebae heterozygous for heterothallic alleles can be isolated and maintained as amoebae; the amoebae form plasmodia in clones without a change in ploidy. Plasmodia were also found to be formed, infrequently, by heterothallic amoebae of a single mating type. The plasmodia are healthy and are also formed without a change in ploidy. Thus, the presence of two different heterothallic mating type genes in a single nucleus is compatible with the amoebal state and one heterothallic mating type gene is compatible with the plasmodial state, once established.  相似文献   

5.
Mating inPhysarum polycephalum involves the fusion of two haploid amoebae and the differentiation of the resulting diploid zygote into a multinucleate plasmodium. Mating proceeds optimally with amoebae growing on an agar medium at pH 5.0. At pH 6.2, the amoebae still grow normally, but mating is completely blocked. The barrier at pH 6.2 is not in the differentiation step, since preformed diploids readily convert to plasmodia at this pH. The barrier can be overcome by raising the ionic strength of the agar medium; the effect, moreover, is not ion-specific. We have discovered a genetic locus,imz (ionicmodulation of zygote formation), that affects the upper pH limit for mating; the respective limits associated with the two known alleles,imz-1 andimz-2, are pH 5.6 and pH 6.0 at low ionic strength. Animz-1×imz-2 mating displays the pH 6.0 limit;imz-2 is therefore “dominant”. We suggest that this new gene affects a cell component that is exposed to the exterior of the amoeba and is involved in the fusion step of mating.  相似文献   

6.
A New Mating Compatibility Locus in PHYSARUM POLYCEPHALUM   总被引:1,自引:1,他引:0       下载免费PDF全文
The rate and extent of plasmodium formation were studied in mating tests involving pairs of largely isogenic amoebal strains compatible for mating-type (mt) alleles. A systematic variability was observed: plasmodia formed either rapidly and extensively or slowly and inefficiently. Plasmodium formation was found to be 103- to 104-fold more extensive in "rapid" crosses than in "slow" crosses. A genetic analysis revealed that the variability reflects the influence of a multiallelic compatibility locus that determines mating efficiency. This compatibility locus (designated matB), together with the original mating type locus, mt (in this work designated matA), constitute a tetrapolar mating specificity system in Physarum polycephalum.  相似文献   

7.
Truitt CL  Hoffman CS  Holt CE 《Genetics》1982,101(1):35-55
The usual sequence of forms in the Physarum polycephalum life cycle is plasmodium-spore-amoeba-plasmodium. So-called "amoebaless life cycle" or alc mutants of this Myxomycete undergo a simplified plasmodium-spore-plasmodium life cycle. We have analyzed three independently isolated alc mutants and found in each case that the failure of the spores to give rise to amoebae is due to a recessive Mendelian allele. The three mutations are tightly linked to one another and belong to a single complementation group, alcA. The mutations are pleiotropic, not only interfering with the establishment of the amoebal form at spore germination, but also affecting the phenotype of alc amoebae, which occasionally arise from alc spores. The alc amoebae (1) grow more slowly than wild type, particularly at elevated temperatures; (2) tend to transform directly into plasmodia, circumventing the sexual fusion of amoebae that usually accompanies plasmodium formation; and (3) form plasmodia by the sexual mechanism less efficiently than wild-type amoebae. The various effects of an alc mutation seem to derive from mutation of a single gene, since reversion for one effect is always accompanied by reversion for the other effects. Moreover, a mutation, aptA1, that blocks direct plasmodium formation by alcA amoebae, also increases their growth rate to near normal. The manner of plasmodium formation in alcA strains differs significantly from that in another class of mutants, the gad mutants. Unlike gad amoebae, alcA amoebae need not reach a critical density in order to differentiate directly into plasmodia and do not respond to the extracellular inducer of differentiation. In addition, alcA differentiation is not prevented by a mutation, npfA1, that blocks direct differentiation by most gad amoebae.  相似文献   

8.
In the heterothallic myxomycete Physarum polycephalum, uninucleate amoebae normally differentiate into syncytial plasmodia following heterotypic mating. In order to study the genetic control of this developmental process, mutations affecting the amoebal-plasmodial transition have been sought. Numerous mutants characterized by self-fertility have been isolated. The use of alkylating mutagens increases the mutant frequency over the spontaneous level but does not alter the mutant spectrum. Three spontaneous and 14 induced mutants have been analyzed genetically. In each, the mutation appears to be linked to the mating type locus. In three randomly selected mutants, the nuclear DNA content is the same in amoebae and plasmodia, indicating that amoebal syngamy does not precede plasmodium development in these strains. These results indicate that a highly specific type of mutational event, occurring close to or within the mating type locus, can abolish the requirement for syngamy normally associated with plasmodial differentiation. These mutations help define a genomic region regulating the switch from amoebal to plasmodial growth.  相似文献   

9.
The effect of food supply on the onset of asexual and sexual plasmodium formation in Physarum polycephalum was studied. Asexual differentiation occurs readily in amoebae carrying the matAh mating type allele. The density at which these amoebae begin to differentiate is influenced by the ind locus, which controls the production of a diffusible inducer. The alleles ind-1 and ind-2 are known. Strains carring the ind-1 allele begin plasmodium formation at a low amoebal density (rapid differentiation), while strains carring the ind-2 allele differentiate at a higher amoebal density (slow differentiation). The onset of differentiation is characteristic of the strain and did not change with a 20-fold variation in the number of food bacteria available. Sexual differentiation occurs between compatible amoebal strains. For a given pair of amoebal strains the onset of plasmodium formation occurs at a characteristic cell density that is determined by the genetic backgrounds of the strains. The ind locus is one of the genes that influences this cell density. Plasmodia are formed at a lower cell density in crosses involving compatible amoebae carrying the ind-1 allele than they are in crosses with strains carrying the ind-2 allele. As was found for asexual differentiation, an approximate 20-fold variation in the food supply did not affect the initiation of sexual plasmodium formation. These results suggest that in most cases starvation does not trigger the differentiation of amoebae into plasmodia. The time of onset of plasmodium formation is determined largely by genetic factors.  相似文献   

10.
Anderson RW 《Genetics》1979,91(3):409-419
Amoebae of the Myxomycete Physarum polycephalum differentiate to yield plasmodia in two ways: in crossing, haploid amoebae of appropriate genotypes fuse to form diploid plasmodia; in selfing, plasmodia form without amoebal fusion or increase in ploidy. Amoebae carrying the mating-type allele matAh (formerly mth) self efficiently, but occasionally give rise to mutants that self at very low frequencies. Such "amoebal-plasmodial transition" mutants were mixed in pairs to test their ability to complement one another in the formation of plasmodia by crossing. The pattern of crossing permitted 33 mutants to be assigned to four complementation groups (aptA-, npfA-, npfB- and npfC-). Similar tests had previously proved only partially successful, as crossing had occurred only rarely in mixtures of compatible strains. The efficiency of complementation was greatly increased in the current work by mixing strains that carried different alleles of a newly-discovered mating-compatibility locus, matB; this locus had no effect on the specificity of complementation. A possible interpretation of the complementation behavior of the mutants is suggested.  相似文献   

11.
Amoebae of the acellular slime mold Physarum polycephalum convert to plasmodia both asexually and sexually. Genetic analysis of a mutant that exhibits enhanced asexual plasmodium formation is reported. The mutant carries a single lesion (gad-11) located 12.3 map units from mt, a gene that controls mating specificity in sexual plasmodium formation. The mutation, which was isolated in an mt3 strain, is also expressed in mth and mt4 strains.  相似文献   

12.
An improved assay for quantitatively measuring the number of plasmodia formed with time is presented. Using this assay we have investigated the effects of three proteases, subtilisin PBN', subtilisin carlsberg and alpha-chymotrypsin. We have shown that 1) plasmodium formation is sensitive to protease treatment only during the first 2 h after mixing amoebae of compatible mating type but not after, 2) amoebae are protease sensitive when treated 1 h prior to mixing, 3) the two clones used have different sensitivities to protease treatment and 4) these effects are due to enzymatic activity and have little effect on viability. The meaning of these results in relation to recent evidence for a diffusible inducer of plasmodium formation is discussed.  相似文献   

13.
The two vegetative cell types of the acellular slime mould Physarum polycephalum - amoebae and plasmodia - differ greatly in cellular organisation and behaviour as a result of differences in gene expression. The development of uninucleate amoebae into multinucleate, syncytial plasmodia is under the control of the mating-type locus matA, which is a complex, multi-functional locus. A key period during plasmodium development is the extended cell cycle, which occurs in the developing uninucleate cell. During this long cell cycle, many of the changes in cellular organisation that accompany development into the multinucleate stage are initiated including, for example, alterations in microtubule organisation. Genes have been identified that show cell-type specific expression in either amoebae or plasmodia and many of these genes alter their pattern of expression during the extended cell cycle. With the introduction of a DNA transformation system for P. polycephalum, it is now possible to investigate the functions of genes in the vegetative cell types and their roles in the cellular reorganisations accompanying development.  相似文献   

14.
Summary Immunofluorescent labelling ofPhysarum microtubules with a new antibody specific for the 1-isotubulin has been compared with the labelling with an antibody specific for -isotubulins and an antibody with recognizes tubulin chains terminated by an aromatic amino-acid. In agreement with the known presence of only one -isotype in amoebae and several -isotypes in plasmodia, the immunofluorescence of the mitotic spindle was qualitatively identical, but lower in plasmodia than in amoebae. In all cases except one, there were no relative variations of immuno-fluorescence staining with the three antibodies, from metaphase to telophase, in spindles sampled. In plasmodia grown at optimal temperature, both during normal or perturbed mitosis, the immunostaining of the 1isotype decreased sharply after metaphase, while the staining obtained with the two other antibodies did not vary significantly. The immunologic determination of the relative amount of the 1-isotubulin in the tubulin pool and in isolated mitotic microtubules could not account for this observation.  相似文献   

15.
Reproductive isolation is essential for the process of speciation. In order to understand speciation, it is necessary to compare one mating group with other phylogenetically related but reproductively isolated groups. The Closterium peracerosum–strigosum–littorale (C. psl.) complex is a unicellular isogamous zygnematophycean alga, which is believed to share a close phylogenetic relationship with the land plants. In this study, we identified a new mating group, named group G, of C. psl. complex and compared its physiological and biochemical characteristics with the mating group I-E, which was closely related to the mating group G. Zygospores are typically formed as a result of conjugation between mating-type plus (mt+) and mating-type minus (mt?) cells in the same mating group during sexual reproduction. Crossing experiments revealed mating groups G and I-E were reproductively isolated from each other, but the release of lone protoplasts from mt? cells of mating group G was induced in the presence of mt+ cells of mating group I-E. In fact, the sex pheromone, protoplast-release-inducing protein of mating group I-E induced the release of protoplasts from mt? cells of mating group G. When mt+ and mt? cells of both mating groups I-E and G were co-cultured (multiple-choice matings), the zygospore formation of mating group G, but not that of mating group I-E, was inhibited. Based on these results, we propose a possible mechanism of reproductive isolation between the two mating groups and suggest the presence of sexual interference between mating group G and mating group I-E.  相似文献   

16.
Youngman PJ  Anderson RW  Holt CE 《Genetics》1981,97(3-4):513-530
The mating of Physarum polycephalum amoebae, the ultimate consequence of which is a "plasmodium," was recently shown to be governed by two compatibility loci, matA (or mt) and matB (Dee 1978; Youngmanet al. 1979). We present evidence that matA and matB separately regulate two discrete stages of mating: in the first stage, amoebae (which are normally haploid) fuse in pairs, with a specificity determined by matB genotype, to form diploid zygotes; subsequent differentiation of the zygotes into plasmodia is regulated by matA and is unaffected by matB. Mixtures of amoebae carrying unlike matA and matB alleles formed diploids to the extent of 10 to 15% of the cells present, and the diploids differentiated into plasmodia. When only the matB alleles differed, diploid cells still formed to a comparable (5 to 10%) extent, but rather than differentiating, these diploids remained amoebae. When strains carried the same alleles of matB, formation of diploid cells was greatly reduced: in like-matB, like-matA mixtures, none of 320 cells examined was diploid; in like-matB, unlike mat-A mixtures, differentiating diploids could be detected, but at only 10(-3) to 10(-2) the frequency of unlike-matB, unlike-matA mixtures. The nondifferentiating diploid amoebae recovered from unlike-matB, like-matA mixtures were genetically stable through extensive growth, even though they grew more slowly than haploids (10-hr vs. 8-hr doubling period), and could be crossed with both haploids and diploids. The results of such higher ploidy and mixed ploidy crosses indicate that karyogamy does not invariably accompany zygote formation and differentiation.  相似文献   

17.
Sex-specific agglutinins from the cell surface of haploid cells of Saccharomyces cerevisiae (X2180, mta and mt) were purified and analysed. The constitutive agglutinin from mta cells was extractable with 3 mM dithiothreitol. It was shown to be a glycoprotein (3% mannose) with an apparent Mr of 43,000 based on gel filtration, but in SDS-PAGE it behaved as a much smaller molecule (Mr between 18,000 and 26,000). About one in three amino acids was a hydroxyamino acid. Its biological activity was resistant to boiling for 1 h, but sensitive to pronase. Intact mt cells retained their agglutinability in the presence of dithiothreitol but limited trypsinizing released a biologically active agglutinin fragment. It had an apparent Mr of 320,000 (gel filtration). When analysed by SDS-PAGE, a single diffuse band with an apparent Mr of 225,000 was observed. The protein was 94% (w/w) mannose with a trace of N-acetyl glucosamine. Its biological activity was almost completely lost after boiling for 1 h. Both agglutinins behaved as monovalent molecules and specifically inhibited the biological activity of both noninduced and pheromone-induced cells. Pheromone treatment of mta cells resulted in an apparent 32-fold increase in agglutinin activity at the cell surface, whereas pheromone treatment of mt cells only doubled the apparent agglutinin activity.Abbreviations mt mating type - DTT dithiothreitol - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - YPG yeast-peptone-glucose - PAS periodic-acid-Schiff reagent  相似文献   

18.
Summary A replica plating method for isolating ts amoebal mutants of Physarum polycephalum has been devised. Temperature-sensitive mutations occur at a frequency after nitrosoguanidine mutagenesis of 10-3 per survivor, are stable but are not usually expressed in the plasmodia formed from these amoebae in clones. Some of these mutants appear to be cell-cycle stage specific.  相似文献   

19.
Summary The linear mitochondrial DNAs of the two infertile algal species Chlamydomonas smithii and C. reinhardtii are co-linear with the exception of a 1 kb intron ( intron) located in the cytochrome b gene of C. smithii. C. smithii also possesses an additional HpaI restriction site (H marker) located in the COXI gene, about 5 kb from the intron. In reciprocal crosses, C. smithii (H ++) × C. reinhardtii (H ), the intron is transmitted to all diploid progeny, whereas the H marker is frequently transmitted either biparentally or paternally depending on whether the C. smithii parent is maternal (mt +) or paternal (mt ). In diploids resulting from artificial fusion between vegetative cells, the absolute transmission of a is accompanied by the frequent transmission of the H + marker, irrespective of the mating type of the parental strains. Finally, in reciprocal crosses between C. smithii (H ++) and recombinant H + clones, the transmission of the H marker is predominantly paternal or biparental. These results allow us to conclude that (1) the a intron behaves as a group I intron whose unidirectional conversion influences the transmission of the H marker; and (2) the mt paternal mitochondrial genome is transmitted more often than the mt +. The mating type has no effect in diploids obtained by artificial fusion.  相似文献   

20.
Several treatments were tested to extract the sexual binding site from membrane vesicles derived from the flagellar surface of Chlamydomonas eugametos. Extraction with detergents, chaotropic and hydrogen bond-disrupting agents, as well as sonication, was effective in reducing the isoagglutination activity of these membrane vesicles. Complementary with this reduction, a sex-specific biological activity related to isoagglutination, called twitch activity appeared in the extract. This was only observed with vesicles derived from minus mating type (mt-) gametes. After fractionation of the extract, one high-molecular weight glycoprotein fraction appeared to be responsible for this activity. When extracts were treated with cross-linking agents, a pelletable fraction was obtained with isoagglutinative activity. We conclude that the mt- factor, responsible for twitch activity, causes isoagglutination when it is rendered multivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号