首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Peroxisomes contain enzymes catalyzing the β-oxidation of fatty acids, which have been purified and partially characterized. Hypolipidemic drugs, including clofibrate, cause a marked proliferation of peroxisomes and a striking increase in the activity of their β-oxidation system. We have compared by sodium dodecyl sulfate—polyacrylamide gel electrophoresis the polypeptide patterns of normal and clofibrate-induced peroxisomes and the purified β-oxidation enzymes. The data allow a tentative identification of the β-oxidation enzymes among the peroxisomal polypeptides; these enzymes constitute only a small part of the protein of normal peroxisomes. A subset of peroxisomal polypeptides, including the β-oxidation enzymes, is preferentially increased by clofibrate.  相似文献   

2.
Peroxisomes are single membrane bound organelles present in almost all eukaryotic cells, and to date have been shown to contain approximately 60 identified enzymes involved in various metabolic pathways, including the oxidation of a variety of lipids. These lipids include very long-chain fatty acids, methyl branched fatty acids, prostaglandins, bile-acid precursors and xenobiotics that are either β-oxidized or α-oxidized in peroxisomes. The recent identification of several acyl-CoA thioesterases and acyltransferases in peroxisomes has revealed their various functions in acting as auxiliary enzymes in α- and β-oxidation in this organelle. To date, 9 functional acyl-CoA thioesterases and acyltransferases have been identified in mouse and 4 functional acyl-CoA thioesterases and acyltransferases in human, thus these enzymes make up a substantial portion of peroxisomal proteins. This review will therefore focus on new and emerging roles for these enzymes in assisting with the oxidation of various lipids, amidation of lipids for excretion from peroxisomes, and in controlling coenzyme A levels in peroxisomes.  相似文献   

3.
X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.  相似文献   

4.
Although diabetes normally causes an elevation of cholesterol biosynthesis and induces hypercholesterolemia in animals and human, the mechanism linking diabetes to the dysregulation of cholesterol biosynthesis in the liver is not fully understood. As liver peroxisomal β-oxidation is induced in the diabetic state and peroxisomal oxidation of fatty acids generates free acetate, we hypothesized that peroxisomal β-oxidation might play a role in liver cholesterol biosynthesis in diabetes. Here, we used erucic acid, a specific substrate for peroxisomal β-oxidation, and 10,12-tricosadiynoic acid, a specific inhibitor for peroxisomal β-oxidation, to specifically induce and suppress peroxisomal β-oxidation. Our results suggested that induction of peroxisomal β-oxidation increased liver cholesterol biosynthesis in streptozotocin-induced diabetic mice. We found that excessive oxidation of fatty acids by peroxisomes generated considerable free acetate in the liver, which was used as a precursor for cholesterol biosynthesis. In addition, we show that specific inhibition of peroxisomal β-oxidation decreased cholesterol biosynthesis by reducing acetate formation in the liver in diabetic mice, demonstrating a crosstalk between peroxisomal β-oxidation and cholesterol biosynthesis. Based on these results, we propose that induction of peroxisomal β-oxidation serves as a mechanism for a fatty acid-induced upregulation in cholesterol biosynthesis and also plays a role in diabetes-induced hypercholesterolemia.  相似文献   

5.
Peroxisomes play an essential role in a number of important metabolic pathways including β-oxidation of fatty acids and their derivatives. Therefore, peroxisomes possess various β-oxidation enzymes and specialized fatty acid transport systems. However, the molecular mechanisms of these proteins, especially in terms of substrate binding, are still unknown. In this study, to identify the substrate-binding sites of these proteins, we synthesized a photoreactive palmitic acid analogue bearing a diazirine moiety as a photophore, and performed photoaffinity labeling of purified rat liver peroxisomes. As a result, an 80-kDa peroxisomal protein was specifically labeled by the photoaffinity ligand, and the labeling efficiency competitively decreased in the presence of palmitoyl-CoA. Mass spectrometric analysis identified the 80-kDa protein as peroxisomal multifunctional enzyme type 2 (MFE2), one of the peroxisomal β-oxidation enzymes. Recombinant rat MFE2 was also labeled by the photoaffinity ligand, and mass spectrometric analysis revealed that a fragment of rat MFE2 (residues Trp249 to Arg251) was labeled by the ligand. MFE2 mutants bearing these residues, MFE2(W249A) and MFE2(R251A), exhibited decreased labeling efficiency. Furthermore, MFE2(W249G), which corresponds to one of the disease-causing mutations in human MFE2, also exhibited a decreased efficiency. Based on the crystal structure of rat MFE2, these residues are located on the top of a hydrophobic cavity leading to an active site of MFE2. These data suggest that MFE2 anchors its substrate around the region from Trp249 to Arg251 and positions the substrate along the hydrophobic cavity in the proper direction toward the catalytic center.  相似文献   

6.
We have used a PCR-based subtractive hybridization method to identify upregulated cDNAs in the livers of rats treated with a peroxisome proliferator [clofibrate or di(2-ethylhexyl) phthalate]. After four rounds of subtractive hybridization 62 differentially hybridizing clones were partially sequenced and analyzed by sequence homology searching. Of 62, 49 were identical to 14 different upregulated rat sequences in the databank (mostly genes encoding microsomal or peroxisomal enzymes), 4 of 62 were fragments of three previously unknown genes, and 9 of 62 were false positives. Two of the unknown fragments hybridized to a single novel cDNA that was found to be more than 20-fold induced by both peroxisome proliferators. The 36-kDa predicted protein product of this cDNA shows a high degree of sequence homology to enoyl-CoA hydratases of several different species and has a C-terminal peroxisomal targeting sequence. An epitope-tagged protein product of a full-length cDNA was targeted to peroxisomes in a human cell line. We named this gene, which encodes an apparent peroxisomal enoyl-CoA hydratase, ECH1. We have also identified human ECH1 cDNA and mapped its structural gene to 19q13, 3′ to the ryanodine receptor, by hybridization to somatic cell hybrid DNA and chromosome 19-specific cosmid arrays. Possible roles for the ECH1 protein product in peroxisomal β-oxidation are discussed.  相似文献   

7.
Male albino rats (Sprague Dawley) were fed for 2-6 weeks on a diet containing 0.75% clofibrate. Liver cell fractions obtained from these animals were assayed for peroxisomal enzymes. In the cell homogenate the catalase activity was doubled, whereas the activity of urate oxidase was found to be only slightly depressed. The activity of carnitine acetyltransferase increased several times. In liver peroxisomes purified by isopycnic gradient centrifugation the specific activity of urate oxidase decreased appreciably showing that peroxisomes formed under the proliferative influence of clofibrate are not only modified with respect to their morphological characteristics but also to their enzymic equipment. This is also obvious from the changes in peroxisomal carnitine acetyltransferase activity which was enhanced by clofibrate to more than the fivefold amount. In purified mitochondria this enzyme was even more active: clofibrate advances both, the peroxisomal and the mitochondrial moiety of carnitine acetyltransferase. Morphological and cytochemical studies showed an increase in the number of microbodies and as compared to the controls microbodies were lying in groups more frequently. Small particles located closely adjacent to "normal" sized peroxisomes were found particularly after short feeding periods. While the number of coreless microbodies increased studies gave no clear evidence for an increase in marked shape irregularities of the peroxisomes.  相似文献   

8.
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner.  相似文献   

9.
Bode K  Hooks MA  Couee I 《Plant physiology》1999,119(4):1305-1314
The existence in higher plants of an additional β-oxidation system in mitochondria, besides the well-characterized peroxisomal system, is often considered controversial. Unequivocal demonstration of β-oxidation activity in mitochondria should rely on identification of the enzymes specific to mitochondrial β-oxidation. Acyl-coenzyme A dehydrogenase (ACAD) (EC 1.3.99.2,3) activity was detected in purified mitochondria from maize (Zea mays L.) root tips and from embryonic axes of early-germinating sunflower (Helianthus annuus L.) seeds, using as the enzyme assay the reduction of 2,6-dichlorophenolindophenol, with phenazine methosulfate as the intermediate electron carrier. Subcellular fractionation showed that this ACAD activity was associated with mitochondrial fractions. Comparison of ACAD activity in mitochondria and acyl-coenzyme A oxidase activity in peroxisomes showed differences of substrate specificities. Embryonic axes of sunflower seeds were used as starting material for the purification of ACADs. Two distinct ACADs, with medium-chain and long-chain substrate specificities, respectively, were separated by their chromatographic behavior, which was similar to that of mammalian ACADs. The characterization of these ACADs is discussed in relation to the identification of expressed sequenced tags corresponding to ACADs in cDNA sequence analysis projects and with the potential roles of mitochondrial β-oxidation in higher plants.  相似文献   

10.
8-iso-PGF isoprostane (IP) is one of the most-used markers of lipid peroxidation in experimental models and humans. After its formation, it is promptly metabolized to 2,3 dinor (DIN) in peroxisomes.Conjugated linoleic acid (CLA) is preferentially β-oxidized in peroxisomes which may compete with IP, and thereby may affect its metabolism.In order to verify whether CLA is able to influence IP formation and/or metabolism and to explain the mechanism, we challenged rats supplemented with CLA or with triolein (as a control fatty acid), with a single dose of carbon tetrachloride (CCl4) or of bacterial lipopolysaccharide (LPS). The results showed that IP and its precursor arachidonic acid hydroperoxide, as well as malondialdheyde (MDA), increase significantly in the liver of rats challenged with CCl4, irrespective of the diet, while in LPS-treated rats only nitrites in liver and isoprostane in plasma increase. On the other hand, the peroxisomal β-oxidation products of IP, the DIN, is significantly lower in the CLA group with respect to control and triolein groups.To further investigate whether this is due to competition between CLA and IP at the cellular level, we incubated human fibroblasts from healthy subjects or patients with adrenoleukodystrophy (ALD), with CLA and/or commercially available IP. The rationale of this approach is based on the deficient peroxisomal β-oxidation of fibroblasts from ALD patients, leading to a reduced formation of DIN. In both normal and ALD cells, the presence of CLA significantly inhibits the formation of DIN from IP.We may conclude that both in vitro and in vivo studies strongly suggest that CLA may impair IP catabolism in peroxisomes. Consequently an increase of IP, as a sole result of CLA intake, cannot be considered as a marker of lipid peroxidation.  相似文献   

11.
We describe four infants with a novel subtype of an isolated deficiency of one of the peroxisomal β-oxidation enzymes with detectable enzyme protein. The patients showed characteristic clinical and biochemical abnormalities, including hypotonia, psychomotor retardation, hepatomegaly, typical facial appearance, accumulation of very-long-chain fatty acids, and decreased lignoceric acid oxidation. However, β-oxidation enzyme proteins were detected by immunoblot analyses, and large peroxisomes were identified by immunofluorescence staining. In order to identify the underlying defect in these patients, complementation analysis was introduced using fibroblasts from these patients and patients with an established deficiency of either acyl-CoA oxidase or bifunctional enzyme, as identified by immunoblotting. In the complementing combinations, fused cells showed increased lignoceric acid oxidation, resistance against 1-pyrene dodecanoic acid/UV selection, and normalization of the size and the distribution of peroxisomes. The results indicate that two patients with a more severe clinical course were suffering from bifunctional enzyme deficiency and that the other two infants, who were siblings and had a less severe clinical presentation, were the first patients with acyl-CoA oxidase deficiency with detectable enzyme protein.  相似文献   

12.
13.
Peroxisomal proliferators induce in rodents hepatic hyperplasia and hypertrophy; the significant increase in the peroxisomal population is accompanied by specific and reversible induction of some peroxisomal enzymes. In suckling rats born from clofibrate-treated mothers, a massive removal of proliferated organelles occurs within 3 days of recovery. In the present paper we examined the early stages of the recovery period in liver of male rats treated with clofibrate for 5 days. The lysosomal involvement in the removal of drug-induced peroxisomes was investigated under physiological conditions, ie in the absence of inhibitors of the autophagic process. Biochemical results indicate that peroxisomal β-oxidation, but not catalase activity, returns to the control values within the examined period. Total acid phosphatase activity is not affected by clofibrate treatment, but following fractionation on a linear density gradient the lysosomal marker enzyme activity is shifted towards lower density values, particularly at day 1 and 2 of recovery. This class of organelles possibly represents lysosomes involved in active autophagic processes. Acid phosphatase cytochemistry shows an increase of lysosome number at day 1 of recovery. Combination of acid phosphatase cytochemistry either with catalase cytochemistry or with catalase immunogold labelling allows to reveal organelles containing both marker enzymes. These results strongly support the involvement of autophagic processes in the removal of proliferated peroxisomes.  相似文献   

14.
Chain shortening via beta-oxidation from the omega-end has been recognized as the major pathway for the degradation of cysteinyl leukotrienes as well as leukotriene B4 (LTB4). The metabolic compartmentation of this pathway was studied using peroxisomes purified from normal and clofibrate-treated rat liver. beta-Oxidation products of omega-carboxy-LTB4, including omega-carboxy-dinor-LTB4 identified by gas chromatography-mass spectrometry, were formed by the isolated peroxisomes. The reaction was dependent on CoA, ATP, and NAD and was stimulated by FAD. NADPH was necessary for the further metabolism of omega-carboxy-dinor-LTB4. Together with microsomes a degradation of omega-carboxy-LTB4 also proceeded in isolated mitochondria in the presence of CoA, ATP, and carnitine. beta-Oxidation of the cysteinyl leukotriene omega-carboxy-N-acetyl-leukotriene E4 was observed only with isolated peroxisomes in combination with lipid-depleted microsomes. Direct photoaffinity labeling using omega-carboxy-[3H] LTB4 and omega-carboxy-N-[3H]acetyl-LTE4 served to identify peroxisomal leukotriene-binding proteins. The bifunctional protein (EC 4.2.1.17 and 1.1.1.35) and 3-ketoacyl-CoA thiolase (EC 2.3.1.16) of the peroxisomal beta-oxidation system were the predominantly labeled polypeptides as revealed by precipitation with monospecific antibodies. In vivo studies with N-acetyl-[3H2]LTE4, N-acetyl-[3H8]LTE4, and N-[14C]acetyl-LTE4 after treatment with the peroxisome proliferator clofibrate indicated formation and biliary excretion of large amounts of metabolites more polar than omega-carboxy-tetranor-N-acetyl-LTE3 including omega-carboxy-tetranor-delta 13-N-acetyl-LTE4 and omega-carboxy-hexanor-N-acetyl-LTE3. Increased formation of beta-oxidized catabolites of N-acetyl-LTE4 and LTB4 was also observed in hepatocytes isolated after clofibrate treatment. Our results indicate that peroxisomes play a major role in the beta-oxidation of leukotrienes from the omega-end. Whereas omega-carboxy-LTB4 was beta-oxidized both in isolated peroxisomes and mitochondria, the cysteinyl leukotriene omega-carboxy-N-acetyl-LTE4 was exclusively degraded in peroxisomes.  相似文献   

15.
In plants, peroxisomes are the organelles involved in various metabolic processes and physiological functions including β-oxidation, mobilization of seed storage lipids, photorespiration, and hormone biosynthesis. We have recently shown that, in fungi and plants, peroxisomes play a vital role in biosynthesis of biotin, an essential cofactor required for various carboxylation and decarboxylation reactions. In fungi, the mutants defective in peroxisomal protein import exhibit biotin auxotrophy. The fungal BioF protein, a 7-keto-8-aminopelargonic acid (KAPA) synthase catalyzing the conversion of pimeloyl-CoA to KAPA in biotin biosynthesis, contains the peroxisomal targeting sequence 1 (PTS1), and its peroxisomal targeting is required for biotin biosynthesis. In plants, biotin biosynthesis is essential for embryo development. We have shown that the peroxisomal targeting sequences of the BioF proteins are conserved throughout the plant kingdom, and the Arabidopsis thaliana BioF protein is indeed localized in peroxisomes. Our findings suggest that peroxisomal localization of the BioF protein is evolutionarily conserved among eukaryotes, and required for biotin biosynthesis and plant growth and development.  相似文献   

16.
Peroxisomes, lipid metabolism, and human disease   总被引:2,自引:0,他引:2  
In the past few years, much has been learned about the metabolic functions of peroxisomes. These studies have shown that peroxisomes play a major role in lipid metabolism, including fatty acid β-oxidation, etherphospholipid biosynthesis, and phytanic acid α-oxidation. This article describes the current state of knowledge concerning the role of peroxisomes in these processes, especially in relation to various peroxisomal disorders in which there is an impairment in peroxisomal lipid metabolism.  相似文献   

17.
The n-alkane-assimilating diploid yeast Candida tropicalis possesses three thiolase isozymes encoded by two pairs of alleles: cytosolic and peroxisomal acetoacetyl-coenzyme A (CoA) thiolases, encoded by CT-T1A and CT-T1B, and peroxisomal 3-ketoacyl-CoA thiolase, encoded by CT-T3A and CT-T3B. The physiological functions of these thiolases have been examined by gene disruption. The homozygous ct-t1aΔ/t1bΔ null mutation abolished the activity of acetoacetyl-CoA thiolase and resulted in mevalonate auxotrophy. The homozygous ct-t3aΔ/t3bΔ null mutation abolished the activity of 3-ketoacyl-CoA thiolase and resulted in growth deficiency on n-alkanes (C10 to C13). All thiolase activities in this yeast disappeared with the ct-t1aΔ/t1bΔ and ct-t3aΔ/t3bΔ null mutations. To further clarify the function of peroxisomal acetoacetyl-CoA thiolases, the site-directed mutation leading acetoacetyl-CoA thiolase without a putative C-terminal peroxisomal targeting signal was introduced on the CT-T1A locus in the ct-t1bΔ null mutant. The truncated acetoacetyl-CoA thiolase was solely present in cytoplasm, and the absence of acetoacetyl-CoA thiolase in peroxisomes had no effect on growth on all carbon sources employed. Growth on butyrate was not affected by a lack of peroxisomal acetoacetyl-CoA thiolase, while a retardation of growth by a lack of peroxisomal 3-ketoacyl-CoA thiolase was observed. A defect of both peroxisomal isozymes completely inhibited growth on butyrate. These results demonstrated that cytosolic acetoacetyl-CoA thiolase was indispensable for the mevalonate pathway and that both peroxisomal acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase could participate in peroxisomal β-oxidation. In addition to its essential contribution to the β-oxidation of longer-chain fatty acids, 3-ketoacyl-CoA thiolase contributed greatly even to the β-oxidation of a C4 substrate butyrate.  相似文献   

18.
Peroxisomes were purified from livers of control mice and from mice treated with three agents which induce proliferation of hepatic peroxisomes — namely two structurally unrelated hypolipidemic drugs, clofibrate (ethyl--p-chlorophenoxyisobutyrate) and Wy-14,643 (4-chloro-6[2,3-xylidino)-2-pyrimidinylthio] acetic acid), and a plasticizer, DEHP (di-(2-ethylhexyl)phthalate).Membranes were isolated from these purified peroxisomes and analysed by SDS-polyacrylamide gel electrophoresis. All membranes which were tested, displayed two predominant integral membrane proteins of apparent molecular weights of 68 kDa and 70 kDa respectively, as well as a number of minor components. Treatment of animals with clofibrate, Wy-14,643 and DEHP was observed to result in each case in an increased proportion of the 70 kDa protein in the peroxisomal membranes. These treatments also resulted in increased peroxisomal fatty acid oxidation in livers and an increase in the proportion of catalase activity in the cytosolic fraction of liver cells.These results have been discussed in relation to alterations in the molecular composition of the membranes, the mechanisms of peroxisome proliferation and the inducibility of peroxisomal membrane proteins.  相似文献   

19.
[7-14C]2-Ethyl-5-carboxypentyl phthalate was isolated and purified from urine of rats given [7-14C]-di-(2-ethylhexyl) phthalate. This metabolite was shown to serve as a precursor for 2-ethyl-3-carboxypropylphthalate in vivo. 2-Ethyl-5-carboxypentyl phthalate was oxidized to 2-ethyl-3-carboxypropyl phthalate in liver slices from control or, much more rapidly, from clofibrate-pretreated rats. Inhibition by KCN in liver slices from untreated rats, and strong inhibition by acrylate, suggested that formation of 2-ethyl-3-carboxy-propyl phthalate involved mitochondria β-oxidation. The strong enhancement of the product of this compound by clofibrate (a very weak inducer for mitochondrial dehydrogenases), and strong inhibition by chlorpromazine suggested that peroxisomes may also be able to oxidize 2-ethyl-5-carboxypentyl phthalate. We were able to detect β-oxidation of 2-ethyl-5-carboxypentyl phthalate to 2-ethyl-3-carboxypropyl phthalate using purified mitochondria, but strong phthalate monoester hydrolase activity observed during incubation of the former compound with purified peroxisomes made it impossible to determine whether 2-ethyl-3-carboxypropyl phthalate could be produced in the latter organelle or not. 2-Ethyl-5-carboxypentyl phthalate was such an inefficient substrate for β-oxidation compared to palmitic acid that it is unlikely that it contributes significantly to the production of H2O2 in rats chronically exposed to di-(2-ethylhexyl) phthalate. Normal fatty acids are most likely to serve as the dominat substrates for peroxisomal β-oxidase.  相似文献   

20.
Previously, we identified a peroxisome-specific isoform of Lon protease using subcellular proteomics. In the present study, we investigated changes in the level of the Lon protease in peroxisomes during recovery from peroxisomal proliferation induced by di-(2-ethylhexyl)phthalate (DEHP) to elucidate the function of peroxisomal Lon protease (PSLP). Following a 2-week treatment with DEHP, the level of PSLP was monitored for 15 days. The amount of protease was greatly increased after the 2-week treatment, followed by a further increase 3 days after cessation of the treatment. Afterward, it decreased and reached the control level on day 15. On the other hand, level peroxisomal β-oxidation enzymes induced to express by DEHP started to decrease soon after discontinuation of treatment. The results suggest that PSLP functions to degrade β-oxidation enzymes induced by DEHP during recovery from perxisomal proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号