首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RIP3 is a novel gene product containing a N-terminal kinase domain that shares extensive homology with the corresponding domain in RIP (receptor-interacting protein) and RIP2. Unlike RIP, which has a C-terminal death domain, and RIP2, which has a C-terminal caspase activation and recruitment domain, RIP3 has a unique C terminus. RIP3 binds RIP through its unique C-terminal segment and by virtue of this interaction is recruited to the tumor necrosis factor (TNF) receptor-1 signaling complex. Previous studies have shown that RIP mediates TNF-induced activation of the anti-apoptotic NF-kappaB pathway. RIP3, however, attenuates both RIP and TNF receptor-1-induced NF-kappaB activation. Overexpression studies revealed RIP3 to be a potent inducer of apoptosis, capable of selectively binding to large prodomain initiator caspases.  相似文献   

2.
To understand the mechanism of activation of the IkappaB kinase (IKK) complex in the tumor necrosis factor (TNF) receptor 1 pathway, we examined the possibility that oligomerization of the IKK complex triggered by ligand-induced trimerization of the TNF receptor 1 complex is responsible for activation of the IKKs. Gel filtration analysis of the IKK complex revealed that TNFalpha stimulation induces a large increase in the size of this complex, suggesting oligomerization. Substitution of the C-terminal region of IKKgamma, which interacts with RIP, with a truncated DR4 lacking its cytoplasmic death domain, produced a molecule that could induce IKK and NF-kappaB activation in cells in response to TRAIL. Enforced oligomerization of the N terminus of IKKgamma or truncated IKKalpha or IKKbeta lacking their serine-cluster domains can also induce IKK and NF-kappaB activation. These data suggest that IKKgamma functions as a signaling adaptor between the upstream regulators such as RIP and the IKKs and that oligomerization of the IKK complex by upstream regulators is a critical step in activation of this complex.  相似文献   

3.
The death domain kinase, receptor interacting protein (RIP), is one of the major components of the tumor necrosis factor receptor 1 (TNFR1) complex and plays an essential role in tumor necrosis factor (TNF)-mediated nuclear factor kappaB (NF-kappaB) activation. The activation of NF-kappaB protects cells against TNF-induced apoptosis. Heat-shock proteins (Hsps) are chaperone molecules that confer protein stability and help to restore protein native folding following heat shock and other stresses. The most abundant Hsp, Hsp90, is also involved in regulating the stability and function of a number of cell-signaling molecules. Here we report that RIP is a novel Hsp90-associated kinase and that disruption of Hsp90 function by its specific inhibitor, geldanamycin (GA), selectively causes RIP degradation and the subsequent inhibition of TNF-mediated IkappaB kinase and NF-kappaB activation. MG-132, a specific proteasome inhibitor, abrogated GA-induced degradation of RIP but failed to restore the activation of IkappaB kinase by TNF, perhaps because, in the presence of GA and MG-132, RIP accumulated in a detergent-insoluble subcellular fraction. Most importantly, the degradation of RIP sensitizes cells to TNF-induced apoptosis. These data indicate that Hsp90 plays an important role in TNF-mediated NF-kappaB activation by modulating the stability and solubility of RIP. Thus, inhibition of NF-kappaB activation by GA may be a critical component of the anti-tumor activity of this drug.  相似文献   

4.
The death domain-containing receptor superfamily and their respective downstream mediators control whether or not cells initiate apoptosis or activate NF-kappaB, events critical for proper immune system function. A screen for upstream activators of NF-kappaB identified a novel serine-threonine kinase capable of activating NF-kappaB and inducing apoptosis. Based upon domain organization and sequence similarity, this novel kinase, named mRIP3 (mouse receptor interacting protein 3), appears to be a new RIP family member. RIP, RIP2, and mRIP3 contain an N-terminal kinase domain that share 30 to 40% homology. In contrast to the C-terminal death domain found in RIP or the C-terminal caspase-recruiting domain found in RIP2, the C-terminal tail of mRIP3 contains neither motif and is unique. Despite this feature, overexpression of the mRIP3 C terminus is sufficient to induce apoptosis, suggesting that mRIP3 uses a novel mechanism to induce death. mRIP3 also induced NF-kappaB activity which was inhibited by overexpression of either dominant-negative NIK or dominant-negative TRAF2. In vitro kinase assays demonstrate that mRIP3 is catalytically active and has autophosphorylation site(s) in the C-terminal domain, but the mRIP3 catalytic activity is not required for mRIP3 induced apoptosis and NF-kappaB activation. Unlike RIP and RIP2, mRIP3 mRNA is expressed in a subset of adult tissues and is thus likely to be a tissue-specific regulator of apoptosis and NF-kappaB activity. While the lack of a dominant-negative mutant precludes linking mRIP3 to a known upstream regulator, characterizing the expression pattern and the in vitro functions of mRIP3 provides insight into the mechanism(s) by which cells modulate the balance between survival and death in a cell-type-specific manner.  相似文献   

5.
6.
Wang Y  Sun X  Wu J  Xu BE  Gu C  Wang H  Wang X  Tan F  Peng X  Qiang B  Yuan J  Luo Y 《Biochemistry》2008,47(1):441-448
Tumor necrosis factor alpha (TNFalpha) triggers a signaling pathway converging on the activation of NF-kappaB, which forms the basis for many physiological and pathological processes. In a kinase gene screen using a NF-kappaB reporter, we observed that overexpression of casein kinase 1alpha (CK1alpha) enhanced TNFalpha-induced NF-kappaB activation, and a CK1alpha kinase dead mutant, CK1alpha (K46A), reduced NF-kappaB activation induced by TNFalpha. We subsequently demonstrated that CK1alpha interacted with receptor interacting protein 1 (RIP1) but not with TRADD, TRAF2, MEKK3, IKKalpha, IKKbeta, or IKKgamma in mammalian cells. RIP1 is an indispensable molecule in TNFalpha/NF-kappaB signaling. We demonstrated that CK1alpha interacted with and phosphorylated RIP1 at the intermediate domain. Finally, we showed that CK1alpha enhanced RIP1-mediated NF-kappaB activation. Taken together, our studies suggest that CK1alpha is another kinase that regulates RIP1 function in NF-kappaB activation.  相似文献   

7.
8.
The two members of the atypical protein kinase C (aPKC) subfamily of isozymes (zetaPKC and lambda/iotaPKC) are involved in the control of nuclear factor kappaB (NF-kappaB) through IKKbeta activation. Here we show that the previously described aPKC-binding protein, p62, selectively interacts with RIP but not with TRAF2 in vitro and in vivo. p62 bridges the aPKCs to RIP, whereas the aPKCs link IKKbeta to p62. In this way, a signaling cascade of interactions is established from the TNF-R1 involving TRADD/RIP/p62/aPKCs/IKKbeta. These observations define a novel pathway for the activation of NF-kappaB involving the aPKCs and p62. Consistent with this model, the expression of a dominant-negative mutant lambda/iotaPKC impairs RIP-stimulated NF-kappaB activation. In addition, the expression of either an N-terminal aPKC-binding domain of p62, or its C-terminal RIP-binding region are sufficient to block NF-kappaB activation. Furthermore, transfection of an antisense construct of p62 severely abrogates NF-kappaB activation. Together, these results demonstrate that the interaction of p62 with RIP serves to link the atypical PKCs to the activation of NF-kappaB by the TNFalpha signaling pathway.  相似文献   

9.
10.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) (Apo2 ligand [Apo2L]) is a member of the TNF superfamily and has been shown to have selective antitumor activity. Although it is known that TRAIL (Apo2L) induces apoptosis and activates NF-kappaB and Jun N-terminal kinase (JNK) through receptors such as TRAIL-R1 (DR4) and TRAIL-R2 (DR5), the components of its signaling cascade have not been well defined. In this report, we demonstrated that the death domain kinase RIP is essential for TRAIL-induced IkappaB kinase (IKK) and JNK activation. We found that ectopic expression of the dominant negative mutant RIP, RIP(559-671), blocks TRAIL-induced IKK and JNK activation. In the RIP null fibroblasts, TRAIL failed to activate IKK and only partially activated JNK. The endogenous RIP protein was detected by immunoprecipitation in the TRAIL-R1 complex after TRAIL treatment. More importantly, we found that RIP is not involved in TRAIL-induced apoptosis. In addition, we also demonstrated that the TNF receptor-associated factor 2 (TRAF2) plays little role in TRAIL-induced IKK activation although it is required for TRAIL-mediated JNK activation. These results indicated that the death domain kinase RIP, a key factor in TNF signaling, also plays a pivotal role in TRAIL-induced IKK and JNK activation.  相似文献   

11.
Nod1 is an Apaf-1-like molecule composed of a caspase-recruitment domain (CARD), nucleotide-binding domain, and leucine-rich repeats that associates with the CARD-containing kinase RICK and activates nuclear factor kappaB (NF-kappaB). We show that self-association of Nod1 mediates proximity of RICK and the interaction of RICK with the gamma subunit of the IkappaB kinase (IKKgamma). Similarly, the RICK-related kinase RIP associated via its intermediate region with IKKgamma. A mutant form of IKKgamma deficient in binding to IKKalpha and IKKbeta inhibited NF-kappaB activation induced by RICK or RIP. Enforced oligomerization of RICK or RIP as well as of IKKgamma, IKKalpha, or IKKbeta was sufficient for induction of NF-kappaB activation. Thus, the proximity of RICK, RIP, and IKK complexes may play an important role for NF-kappaB activation during Nod1 oligomerization or trimerization of the tumor necrosis factor alpha receptor.  相似文献   

12.
13.
14.
A RIP-like protein, RIP3, has recently been reported that contains an N-terminal kinase domain and a novel C-terminal domain that promotes apoptosis. These experiments further characterize RIP3-mediated apoptosis and NF-kappaB activation. Northern blots indicate that rip3 mRNA displays a restricted pattern of expression including regions of the adult central nervous system. The rip3 gene was localized by fluorescent in situ hybridization to human chromosome 14q11.2, a region frequently altered in several types of neoplasia. RIP3-mediated apoptosis was inhibited by Bcl-2, Bcl-x(L), dominant-negative FADD, as well as the general caspase inhibitor Z-VAD. Further dissection of caspase involvement in RIP3-induced apoptosis indicated inhibition by the more specific inhibitors Z-DEVD (caspase-3, -6, -7, -8, and -10) and Z-VDVAD (caspase-2). However, caspase-1, -6, -8 and -9 inhibitors had little or no effect on RIP3-mediated apoptosis. Mutational analysis of RIP3 revealed that the C-terminus of RIP3 contributed to its apoptotic activity. This region is similar, but distinct, to the death domain found in many pro-apoptotic receptors and adapter proteins, including FAS, FADD, TNFR1, and RIP. Furthermore, point mutations of RIP3 at amino acids conserved among death domains, abrogated its apoptotic activity. RIP3 was localized by immunofluorescence to the mitochondrion and may play a key role in the mitochondrial disruptions often associated with apoptosis.  相似文献   

15.
Receptor-interacting protein (RIP) is a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappa B activation. In a yeast two-hybrid screening for potential RIP-interacting proteins, we identified ZIN (zinc finger protein inhibiting NF-kappa B), a novel protein that specifically interacts with RIP. ZIN contains four RING-like zinc finger domains at the middle and a proline-rich domain at the C terminus. Overexpression of ZIN inhibits RIP-, IKK beta-, TNF-, and IL1-induced NF-kappa B activation in a dose-dependent manner in 293 cells. Domain mapping experiments indicate that the RING-like zinc finger domains of ZIN are required for its interaction with RIP and inhibition of RIP-mediated NF-kappa B activation. Overexpression of ZIN also potentiates RIP- and TNF-induced apoptosis. Moreover, immunofluorescent staining indicates that ZIN is a cytoplasmic protein and that it colocalizes with RIP. Our findings suggest that ZIN is an inhibitor of TNF- and IL1-induced NF-kappa B activation pathways.  相似文献   

16.
Receptor interacting protein-2, RIP2, is a serine/threonine kinase and has sequence homology to RIP. It functions as an adaptor molecule for some members from the tumor necrosis factor receptor family and mediates divergent signaling pathways including NF-κB activation and cell death. RIP2 contains an N-terminal kinases domain and a C-terminal caspase activation and recruitment domain (CARD). The apoptotic activity of RIP2 is restricted to its C-terminal CARD domain while NF-κB activation requires the intact RIP2 for binding. RIP2 CARD involved homotypic or heterotypic interactions with members of the death domains superfamily. Here I report backbone and sidechain 1H, 13C and 15N resonance assignments of soluble RIP2 CARD as a basis for further structural and functional studies.  相似文献   

17.
18.
Ea CK  Deng L  Xia ZP  Pineda G  Chen ZJ 《Molecular cell》2006,22(2):245-257
The receptor interacting protein kinase 1 (RIP1) is essential for the activation of nuclear factor kappaB (NF-kappaB) by tumor necrosis factor alpha (TNFalpha). Here, we present evidence that TNFalpha induces the polyubiquitination of RIP1 at Lys-377 and that this polyubiquitination is required for the activation of IkappaB kinase (IKK) and NF-kappaB. A point mutation of RIP1 at Lys-377 (K377R) abolishes its polyubiquitination as well as its ability to restore IKK activation in a RIP1-deficient cell line. The K377R mutation of RIP1 also prevents the recruitment of TAK1 and IKK complexes to TNF receptor. Interestingly, polyubiquitinated RIP1 recruits IKK through the binding between the polyubiquitin chains and NEMO, a regulatory subunit of the IKK complex. Mutations of NEMO that disrupt its polyubiquitin binding also abolish IKK activation. These results reveal the biochemical mechanism underlying the essential signaling function of NEMO and provide direct evidence that signal-induced site-specific ubiquitination of RIP1 is required for IKK activation.  相似文献   

19.
20.
NF-kappaB-inducing kinase (NIK) has been implicated as an essential component of NF-kappaB activation. However, the regulatory mechanism of NIK signaling remains elusive. We have identified a novel NIK interacting protein, TNAP (for TRAFs and NIK-associated protein). In mammalian cells, TNAP physically interacts with NIK, TRAF2, and TRAF3 but not IKK1 or IKK2. TNAP specifically inhibits NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, TNF receptor 1, TRADD, RIP, TRAF2, and NIK but does not affect IKK1- and IKK2-mediated NF-kappaB activation. Knockdown of TNAP by lentiviral-mediated small interference RNA potentiates TNF-alpha-induced NF-kappaB activation. TNAP suppresses NIK kinase activity and subsequently reduces p100 processing, p65 phosphorylation, and IkappaBalpha degradation. These data suggest that TNAP is a repressor of NIK activity and regulates both the classical and alternative NF-kappaB signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号