首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The field vole (Microtus agrestis) is characterised by extremely large blocks of heterochromatin on both the X and Y chromosome. Some other Microtus also have blocks of heterochromatin on their sex chromosomes but not as extensive and always of independent origin from the heterochromatic expansion found in M. agrestis. Coupled with evidence of geographic variation in large heterochromatic blocks within other species (e.g. in the western hedgehog Erinaceus europaeus), it might be expected that field voles would show substantial variation in size and disposition of the sex chromosome heterochromatin. In fact, only minor variation has been described up to now. Those studies conducted previously were largely on field voles from central and northern Europe. Here, we describe the karyotype of field voles from Portugal, of interest because recent molecular studies have shown field voles from western Iberia to be a separate evolutionary unit that might be considered a cryptic species, distinct from populations further to the east. The two Portuguese field voles (one female, one male) that we examined also had essentially the same karyotype as seen in other field voles, including the giant sex chromosomes, but with small differences in the structure of the Y chromosome from that described previously. The finding that field voles throughout Europe show relatively little variation in their giant sex chromosomes is consistent with molecular data which suggest a recent origin for this complex of species/near-species.  相似文献   

2.
The mitotic chromosomes of the neotenic (sensu Gould, 1977, and Alberch et al., 1979) salamander Necturus maculosus (Rafinesque) have been examined using a C-band technique to demonstrate the distribution of heterochromatin. The C-banded mitotic chromosomes provide evidence of a highly differentiated XY male/XX female sex chromosome heteromorphism, in which the X and Y chromosomes differ greatly in size and morphology, and in the amount and distribution of C-band heterochromatin. The X chromosome represents one of the largest biarmed chromosomes in the karyotype and is indistinguishable from similar sized autosomes on the basis of C-band heterochromatin. The Y chromosome, on the other hand, is diminutive, morphologically distinct from all other chromosomes of the karyotype, and is composed almost entirely of C-band heterochromatin. The discovery of an X/Y chromosome heteromorphism in this species is consistent with the observation by King (1912) of a heteromorphic spermatogenic bivalent. Karyological and phylogenetic implications are discussed.  相似文献   

3.
Variation in heterochromatin content, as revealed by G- and C-banding, was studied in the sex chromosomes of the wood mouse, Apodemus sylvaticus. The sex-chromosome heterochromatin was also characterized by DAPI staining. Variation in sex chromatin was recorded in extremely large (giant) sex chromosomes in certain individuals and populations. In some individuals, the Y chromosome was the largest element of the complement. Different variants of both the X and Y chromosomes were found within a single population. The variation is therefore a type of population polymorphism and should not be used for taxonomic discrimination.  相似文献   

4.
Different diploid chromosome numbers have been reported for the tufted deer Elaphodus cephalophus (female, 2n = 46/47; male, 2n = 47/48) in earlier reports. In the present study, chromosomal analysis of seven tufted deer (5 male symbol, 2 female symbol) revealed that the karyotype of these animals contains 48 chromosomes, including a pair of large heteromorphic chromosomes in the male. C-banding revealed these chromosomes to be very rich in constitutive heterochromatin. Chromosome banding and PCR of sex chromosome-linked genes (SRY, ZFX, ZFY) performed on DOP-PCR products of single microdissected X and Y chromosomes confirmed that the large telocentric chromosome without secondary constriction is the X chromosome whereas the subtelocentric chromosome is the Y. The increased size of both, the X and Y chromosome, appears to be at least partially attributable to the presence of substantial amounts of heterochromatin.  相似文献   

5.
Arrangement of centromeres in mouse cells   总被引:17,自引:4,他引:17  
Applying a staining procedure which reveals constitutive heterochromatin to cytological preparations of the mouse (Mus musculus), one detects heterochromatin pieces at the centromeric areas of all chromosomes except the Y. The Y chromosome is somewhat heteropyenotic in general but possesses no intensely stained centromeric heterochromatin. The arrangement of the centromeric heterochromatin in interphase cells is apparently specific for a given cell type. In meiotic prophase, centromeric heterochromatin may form clusters among bivalents. From the location of the centromeric heterochromatin of the X chromosome in the sex bivalent, it is concluded that the association between the X and Y (common end) in meiosis is limited to the distal portions of the sex elements.  相似文献   

6.
The morphology, G- and C-banding pattern of the Akodon mollis chromosome complement is analysed. Over a total of 14 males and 10 females studied, 8 males and 7 females had a modal chromosome number of 22, while 6 males and 3 females showed a modal number of 23 chromosomes. In the animals with 23 chromosomes the odd element was considered a B chromosome on the basis of: (a) its small size, (b) the lack of an homologous chromosome and the subsequent formation of univalents at diakinesis and metaphase I from testes, (c) the weak or null genetic action as evidenced by the lack of any obvious variation in the phenotype of carriers.Four females exhibited a sex-pair dimorphism indistinguishable from that observed in males. The G-banding analysis showed homology between the pattern found in the Y chromosome and that detected in the short arm of the X. The study of C-band distribution showed that several autosome pairs and the X chromosomes had small masses of centromeric heterochromatin. On the other hand, the Y and B chromosomes were C-band negative. The Y-like chromosome in females with dimorphism of the sex pair was also C-band negative. Accordingly these females were considered to be XY and not Xx (the x being an extensively deleted X chromosome).This work was supported by grants from UNESCO, OEA, CONICET and CIC. Requests for reprints should be addressed to N.O. Bianchi.  相似文献   

7.
Sex chromosomes differ from autosomes by dissimilar gene content and, at a more advanced stage of their evolution, also in structure and size. This is driven by the divergence of the Y or W from their counterparts, X and Z, due to reduced recombination and the resulting degeneration as well as the accumulation of sex-specific and sexually antagonistic genes. A paradigmatic example for Y-chromosome evolution is found in guppies. In these fishes, conflicting data exist for a morphological and molecular differentiation of sex chromosomes. Using molecular probes and the previously established linkage map, we performed a cytogenetic analysis of sex chromosomes. We show that the Y chromosome has a very large pseudoautosomal region, which is followed by a heterochromatin block (HCY) separating the subtelomeric male-specific region from the rest of the chromosome. Interestingly, the size of the HCY is highly variable between individuals from different population. The largest HCY was found in one population of Poecilia wingei, making the Y almost double the size of the X and the largest chromosome of the complement. Comparative analysis revealed that the Y chromosomes of different guppy species are homologous and share the same structure and organization. The observed size differences are explained by an expansion of the HCY, which is due to increased amounts of repetitive DNA. In one population, we observed also a polymorphism of the X chromosome. We suggest that sex chromosome-linked color patterns and other sexually selected genes are important for maintaining the observed structural polymorphism of sex chromosomes.  相似文献   

8.
N. O. Bianchi  J. Ayres 《Chromosoma》1971,34(3):254-260
The chromosome complement and patterns of heterochromatin distribution (as demonstrated by the DNA d-r method) were studied from three different guinea pigs. Karyotype analyses showed that one of the females had a heteromorphic sex pair formed by a submetacentric X chromosome and a subterminal X chromosome originated by a shortening of the short arm (x-chromosome). The heterochromatin was mainly found in the pericentromeric areas of the autosomes and X chromosomes and in the short arm of pair 7. The Y chromosome exhibited a degree of heterochromatinization different from that of pericentromeric areas.—The analysis of the heterochromatin distribution in the X chromosomes showed that the smaller size of the heteromorphic x-chromosoine was probably due to a lack of heterochromatin in its short arm. Moreover, two out of the three animals studied had a heteromorphic pattern of heterochromatinization in the pair 21 characterized by heterochromatinization of the pericentromeric area in one chromosome and almost complete heterochromatinization of the other homologue.—It is suggested that most of the heterochromatin disclosed by the DNA d-r method is formed by repetitious DNA; and that the Y chromosome and perhaps some autosome regions in guinea pigs are formed by a type of heterochromatin with properties different from those of the constitutive and facultative heterochromatin (intermediate heterochromatin).Supported in part by NIH Grant 5-501-RR05672-02 and by NIH contract 70-2299.  相似文献   

9.
Sen Pathak  T. C. Hsu 《Chromosoma》1976,57(3):227-234
Using C-banded preparations of Mus dunni it is possible to study the behavior of constitutive heterochromatin in early stages of meiotic prophase. The X and the Y chromosomes, both of which contain a large amount of heterochromatin, lie apart in leptotene but move toward each other during zygotene. They then form the sex vesicle at late zygotene. In autosomes zygotene pairing appears to start from the telomeric ends. The centromere of the Y chromosome associates end-to-end with the terminal end of the long arm of the X chromosome. The autosomal heterochromatic short arms show forked morphology in certain bivalents at pachytene, suggesting probable incomplete synapsis.  相似文献   

10.
V. Baimai 《Chromosoma》1969,27(4):381-394
Drosophila birchii, a member of the melanogaster species group of the subgenus Sophophora, is common in the tropical rain forests of the Australia-New Guinea areas. Chromosome squashes are easily prepared from the larval ganglion cells and the sex chromosomes are readily recognizable. The species exhibits a remarkable karyotype variation. The metaphase plate figures, in general, show two pairs of V's, one pair of dots and one pair of sex chromosomes. Variations in metaphase chromosome morphology are found in the X (with four types), the Y (with three types) and chromosome IV (with two types). Chromosomal interchanges between X- and Y-chromosomes Type I are postulated to be involved in the differentiation of sex chromosome morphology while the modification of chromosome IV seems likely to be a result of the acquisition of extra heterochromatin. These chromosome types form seven distinct metaphase plate figures, all encountered in wild populations, thus giving D. birchii the most variable karyotype in the genus Drosophila.  相似文献   

11.
The tandemly arranged MS4 repeat with monomeric units of 4.1 kb is species-specifically distributed in heterochromatin of sex chromosomes of four common vole species of genus Microtus, group arvalis. In this work, we studied the genomic organization of the MS4 homolog in euchromatin of the X chromosome of M. arvalis. It has been shown by analyzing the phage genomic clones that one MS4 copy makes a part of a monomeric unit exceeding 8.5 kb that also includes a new MS7 repeat and, possibly, LINE fragments. MS7 is located together with MS4 in heterochromatin of common vole sex chromosomes, but in a substantially lesser amount. Probably, as a result of an evolutionary transition of an original repeat from euchromatin of the X chromosome to heterochromatin of the Y chromosome, MS4 underwent multiple amplification, and MS7 spread throughout heterochromatin, being surrounded by the MS4 tandem arrays.  相似文献   

12.
William S. Modi 《Chromosoma》1993,102(7):484-490
A novel satellite DNA family (called MSAT-2570) was isolated and characterized from the rodent Microtus chrotorrhinus. With a length of 2,570 bp the repeat unit is among the largest yet reported in mammals and comprises a series of short direct and inverted repeats. These repeat motifs may prevent nucleosome formation or represent an endless source of genetic variation. Restriction enzyme digestion using the two pairs of isoschizomers HpaII/MspI and MboI/Sau3AI demonstrated tissue specific differences in satellite DNA methylation that may reflect variable chromatin conformation or differences in patterns of gene expression. The sex chromosomes of M. chrotorrhinus are unusually large in size among mammals, comprising 15%–20% of the karyotype and containing large blocks of heterochromatin. In situ hybridization of the satellite DNa revealed chromosomal localization predominantly to sex chromosome heterochromatin. A survey of related rodents including three congeneric species also with giant sized sex chromosomes demonstrated that MSAT-2570 is present only in the genome of M. chrotorrhinus. However, another previously reported satellite DNA also isolated from M. chrotorrhinus has been shown to reside on sex chromosome heterochromatin in one of the other three species, indicating that these giant blocks of heterochromatin are complex in structure and comprise multiple, unrelatined satellite DNA families.  相似文献   

13.
The C-banding patterns in the chromosomes ofMicrotus oeconomus, M. arvalis andM. ochrogaster demonstrate differences in the amount and distribution of heterochromatin. Autosomal centromeric heterochromatin appears as conspicuous blocks or as small dots, and in several chromosomes no heterochromatin was detected; interstitial heterochromatin was observed in one autosome pair ofM. ochrogaster. The sex chromosomes also demonstrate differences in the C-banding pattern. InM. oeconomus, the X chromosome exhibits a block of centromeric heterochromatin which is larger than that of the autosomes; this characteristic helps to recognize the X chromosomes in the karyotype. InM. arvalis no heterochromatin was appreciated in the sex chromosomes. The Y chromosomes ofM. ochrogaster andM. oeconomus are entirely heterochromatic. During male meiosis heterochromatin shows condensation, association and chiasma prevention; the sex chromosomes pair end to end in the three species. At pairing, the Y chromosome ofM. arvalis is despiralized, but it appears condensed again shortly before separation of the bivalent.  相似文献   

14.
Specimens of the Savi pine vole (Microtus savii) were collected from three localities in central (Pisa and Viterbo) and southern Italy (Rosarno, Calabria) and were karyotyped using G-, C-, DA/DAPI-, and AluI-banding. All karyotypes had 2n = 54 chromosomes and seemingly identical autosomal banding. The sex chromosomes of the southern Italian specimens, M. savii brachycercus, showed additional large blocks of heterochromatin. In the northern specimens, M. savii savii, the X chromosome is metacentric, whereas in the southern specimens of M. savii brachycercus the X chromosome is a much larger submetacentric chromosome, and the Y chromosome is more than twice the size of the Y in the northern specimens. DA/DAPI staining reveals three levels of fluorescent intensity in the sex chromosomes of the Calabrian specimens. The sex chromosomes of M. savii brachycercus also have the only AluI bands seen in either chromosome set. These data suggest a heterogeneous origin and composition of the C-band regions of these chromosomes. Preliminary data suggest that fertility is reduced in crosses between the two karyomorphs.  相似文献   

15.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

16.
Neotropical fishes have a low rate of chromosome differentiation between sexes. The present study characterizes the first meiotic analysis of sex chromosomes in the order Gymnotiformes. Gymnotus pantanal - females had 40 chromosomes (14m/sm, 26st/a) and males had 39 chromosomes (15m/sm, 24st/a), with a fundamental number of 54 - showed a multiple sexual determination chromosome system of the type X(1)X(1)X(2)X(2)/X(1)X(2)Y. The heterochromatin is restricted to centromeres of all chromosomes of the karyotype. The meiotic behavior of sex chromosomes involved in this system in males is from a trivalent totally pared in the pachytene stage, with a high degree of similarity. The cells of metaphase II exhibit 19 and 20 chromosomes, normal disjunction of sex chromosomes and the formation of balanced gametes with 18 + Y and 18 + X(1)X(2) chromosomes, respectively. The small amount of heterochromatin and repetitive DNA involved in this system and the high degree of chromosome similarity indicated a recent origin of the X(1)X(1)X(2)X(2)/X(1)X(2)Y system in G. pantanal and suggests the existence of a simple ancestral system with morphologically undifferentiated chromosomes.  相似文献   

17.
The sex chromosomes of Microtus agrestis are extremely large due to the accumulation of constitutive heterochromatin. We have identified two prominent satellite bands of 2.0 and 2.8 kb in length after HaeIII and HinfI restriction enzyme digestion of genomic DNA, respectively. These satellites are located on the heterochromatic long arm of the X chromosome as shown using Microtus x mouse somatic cell hybrids. By in-gel hybridization with oligonucleotide probes, the organization of the two satellites was studied: among the many copies of the simple tandem tetranucleotide repeat GATA are interspersed rare single GACA tetramers. One of the satellites also harbours related GGAT simple tandem repeats. In situ hybridizations with plasmid-carried or oligonucleotide GA C T A probes show clustered silver grains on the long and short arm of the X chromosome. Interspersion of differently organized (GATA)n elements is also demonstrable in the autosomal complement and on the Y chromosome. These results are discussed in the context of the evolution of vertebrate sex chromosomes in relation to heterochromatin and simple repetitive DNA sequences.  相似文献   

18.
Lower vertebrates like fish exhibit tremendous diversity in sex determination. There are wide interplays between environment-dependent sex differentiation ranging from natural hermaphroditism to sex reversal and genetic sex determination. Diverse systems of male and female heterogamety coexist in fish and sex chromosomes are rarely distinguishable in morphology. Here we show that the spiny eel ((Mastacembelus aculeatus) of the Perciformes, has evolved highly heteromorphic X and Y chromosomes. The metacentric X and Y chromosomes are the largest among 24 homologous pairs, differ from each other in size and morphology, and become distinct after C-banding because of conspicuous heterochromatin blocks which exhibit alternate distribution around the centromeric region. Chromosome painting using probes from the microdissected X chromosome revealed sequence homology between X and Y. During the pachytene stage of meiosis the X and Y form a bivalent. However, their synapsis is delayed which is particularly evident in one terminus. Therefore, the X and Y have resulted from a pericentric inversion in the Y. We conclude that M. aculeatus represents an example of a highly advanced stage of sex chromosome evolution in fish.  相似文献   

19.
Differences in length of the heterochromatic short arms of the X and Y chromosomes in individuals ofPeromyscus beatae are hypothesized to result from unequal crossing over. To test this hypothesis, we examined patterns of synapsis, chiasma formation, and segregation for maleP. beatae which were either heterozygous or homozygous for the amount of short-arm sex heterochromatin. Synaptonemal complex analysis demonstrated that mitotic differences in heterochromatic shortarm lengths between the X and Y chromosomes were reflected in early pachynema as corresponding differences in axial element lengths within the pairing region of the sex bivalent. These length differences were subsequently eliminated by synaptic adjustment such that by late pachynema, the synaptonemal complex configurations of the XY bivalent of heterozygotes were not differentiable from those of homozygotes. Crossing over between the heterochromatic short arms of the XY bivalent was documented by the routine appearance of a single chiasma in this region during diakinesis/metaphase I. Sex heterochromatin heterozygotes were characterized by the presence of asymmetrical chiasma between the X and Y short arms at diakinesis/metaphase I and sex chromosomes with unequal chromatid lengths at metaphase II. These data corroborate our hypothesis on the role of unequal crossing over in the production and propagation of X and Y heterochromatin variation and suggest that, in some cases, crossing over can occur during the process of synaptic adjustment.  相似文献   

20.
In the housefly, male sex is determined by a dominant factor, M, located either on the Y, on the X, or on any of the five autosomes. M factors on autosome I and on fragments of the Y chromosome show incomplete expressivity, whereas M factors on the other autosomes are fully expressive. To test whether these differences might be caused by heterochromatin-dependent position effects, we studied the distribution of heterochromatin on the mitotic chromosomes by C-banding and by fluorescence in situ hybridization of DNA fragments amplified from microdissected mitotic chromosomes. Our results show a correlation between the chromosomal position of M and the strength of its male-determining activity: weakly masculinizing M factors are exclusively located on chromosomes with extensive heterochromatic regions, i.e., on autosome I and on the Y chromosome. The Y is known to contain at least two copies of the M factor, which ensures a strong masculinizing effect despite the heterochromatic environment. The heterochromatic regions of the sex chromosomes consist of repetitive sequences that are unique to the X and the Y, whereas their euchromatic parts contain sequences that are ubiquitously found in the euchromatin of all chromosomes of the complement. Received: 20 February 1998; in revised form: 11 May 1998 / Accepted: 23 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号