首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the relationship between daily growth rates and diel variation of carbon (C) metabolism and C to nitrogen (N) ratio under P‐ and N‐limitation in the green algae Chlorella autotrophica. To do this, continuous cultures of C. autotrophica were maintained in a cyclostat culture system under 14:10 light:dark cycle over a series of P‐ and N‐limited growth rates. Cell abundance, together with cell size, as reflected by side scatter signal from flow cytometric analysis demonstrated a synchronized diel pattern with cell division occurring at night. Under either type of nutrient limitation, the cellular C:N ratio increased through the light period and decreased through the dark period over all growth rates, indicating a higher diel variation of C metabolism than that of N. Daily average cellular C:N ratios were higher at lower dilution rates under both types of nutrient limitation but cell enlargement was only observed at lower dilution rates under P‐limitation. Carbon specific growth rates during the dark period positively correlated with cellular daily growth rates (dilution rates), with net loss of C during night at the lowest growth rates under N‐limitation. Under P‐limitation, dark C specific growth rates were close to zero at low dilution rates but also exhibited an increasing trend at high dilution rates. In general, diel variations of cellular C:N were low when dark C specific growth rates were high. This result indicated that the fast growing cells performed dark C assimilation at high rates, hence diminished the uncoupling of C and N metabolism at night.  相似文献   

2.
The blue-green alga Synechococcus linearis (Naeg.) Kom. was grown in P- and N-limited chemostats over a range of potentially limiting irradiances in order to determine the combined effects of light and nutrient limitation on some aspects of the composition and metabolism of this alga. Over a narrow range of low irradiances, simultaneous limitation of growth rate by light and either N or P was shown. This simultaneous limitation of growth rate by a nutrient and a physical factor can be explained by the ability of an increased supply of one to compensate in part for a decreased supply of the other. At all irradiances, the internal concentration of the limiting nutrient increased with increasing dilution rate, and the results could be fitted to the Droop relationship. With decreasing irradiance, the internal concentration of the limiting nutrient increased. There appeared to be little or no effect of light on the minimum internal concentration of P but that of N increased with decreasing light. Both chlorophyll a and biliprotein per unit particulate C increased with increasing dilution rate and decreasing irradiance. The critical N/P ratio increased with decreasing light as the N requirement of N-limited cells increased faster than did the P requirement of P-limited cells. The composition of exponentially growing cells in complete medium varied much less with light. Neither dilution rate nor irradiance during growth had a great effect on saturated rates of P or N uptake or alkaline phosphatase activity. Calculated assimilation ratios increased with light and dilution rate. The role of the flexibility of nutrient composition in adaptation to adverse conditions and the implications of the results for the use of physiological indicators of nutrient status are discussed.  相似文献   

3.
1. The cellular nutrient contents of microalgae, when growing at or approaching maximum rates, approximate the Redfield C : N : P (molar) ratio of 106 : 16 : 1. Deviations from this optimal ratio can be used to infer nutrient limitation of microalgal growth. However, this ratio may not be applicable to macroalgae, which are distinguished from microalgae by forming a thallus that is a discrete structure visible to the naked eye. The utility of the Redfield ratio to infer nutrient limitation of the growth of macroalgae was tested for Spirogyra fluviatilis in a field experiment conducted in tropical Australia. 2. The optimal cellular C : N : P ratio for S. fluvialitis was estimated by means of in situ nutrient addition. This was compared with S. fluvialitis cellular ratios determined from eight sites with a wide range of soluble N concentrations (<1–90 μg L?1), a smaller range of soluble P concentrations (5–12 μg L?1), and soluble molar N : P ratios of 0.11– 27. 3. Spirogyra fluviatilis had an optimal molar C : N : P ratio of 1800 : 87 : 1 which differs substantially from the Redfield ratio, and suggests that the latter ratio is not applicable to this macroalga. Concentrations of N and P in the river deviated from the optimal N : P ratio of 87 : 1, inferring nutrient limitation of growth. 4. C : P and C : N ratios of S. fluviatilis varied in accordance with general stoichiometric relationships for autotrophs under nutrient limitation of growth. Ratios of C : P and C : N increased, respectively, with increased severity of P‐ and N‐limitation. Additionally, C : P ratios increased with increased N : P ratios, whilst the C : N ratio increased with decreased N : P ratios. The C : N molar ratio however was an insensitive indicator of nutrient depletion compared with the C : P ratio. Under N‐limitation of growth, luxury amounts of P were stored by S. fluviatilis. 5. In aquatic environments where macroalgae are sufficiently abundant to be sampled, their cellular carbon, nitrogen and phosphorus stoichiometry can be used to infer nutrient limitation of growth when their optimal C : N : P ratio is known.  相似文献   

4.
This study investigated seasonal patterns in stoichiometric ratios, nutrient resorption characteristics, and nutrient use strategies of dominant tree species at three successional stages in subtropical China, which have not been fully understood. Fresh leaf and leaf litterfall samples were collected in growing and nongrowing seasons for determining the concentrations of carbon (C), nitrogen (N), and phosphorus (P). Then, stoichiometric ratios (i.e., C:N, C:P, N:P, and C:N:P) and resorption parameters were calculated. Our results found that there was no consistent variation in leaf C:N and C:P ratios among different species. However, leaf N:P ratios in late‐successional species became significantly higher, indicating that P limitation increases during successional development. Due to the P limitation in this study area, P resorption efficiency and proficiency were higher than corresponding N resorption parameters. Dominant tree species at early‐successional stage adopted “conservative consumption” nutrient use strategy, whereas the species at late‐successional stage inclined to adopt “resource spending” strategy.  相似文献   

5.
While mowing‐induced changes in plant traits and their effects on ecosystem functioning in semi‐arid grassland are well studied, the relations between plant size and nutrient strategies are largely unknown. Mowing may drive the shifts of plant nutrient limitation and allocation. Here, we evaluated the changes in nutrient stoichiometry and allocation with variations in sizes of Leymus chinensis, the dominant plant species in Inner Mongolia grassland, to various mowing frequencies in a 17‐yr controlled experiment. Affected by mowing, the concentrations of nitrogen (N), phosphorus (P), and carbon (C) in leaves and stems were significantly increased, negatively correlating with plant sizes. Moreover, we found significant trade‐offs between the concentrations and accumulation of N, P, and C in plant tissues. The N:P ratios of L. chinensis aboveground biomass, linearly correlating with plant size, significantly decreased with increased mowing frequencies. The ratios of C:N and C:P of L. chinensis individuals were positively correlated with plant size, showing an exponential pattern. With increased mowing frequencies, L. chinensis size was correlated with the allocation ratios of leaves to stems of N, P, and C by the tendencies of negative parabola, positive, and negative linear. The results of structure equation modeling showed that the N, P, and C allocations were co‐regulated by biomass allocation and nutrient concentration ratios of leaves to stems. In summary, we found a significant decoupling effect between plant traits and nutrient strategies along mowing frequencies. Our results reveal a mechanism for how long‐term mowing‐induced changes in concentrations, accumulations, ecological stoichiometry, and allocations of key elements are mediated by the variations in plant sizes of perennial rhizome grass.  相似文献   

6.
7.
Particulate elemental ratios (C:N, N:P and C:Chl a) of seston in hypersaline (70–90 g kg–1) Mono Lake, California, were examined over an 11-year period (1990–2000) which included the onset and persistence of a 5-year period of persistent chemical stratification. Following the onset of meromixis in mid-1995, phytoplankton and dissolved inorganic nitrogen were substantially reduced with the absence of a winter period of holomixis. C:N, N:P and C:Chl a ratios ranged from 5 to 18 mol mol–1, 2 to 19 mol mol–1 and 25 to 150 g g–1, respectively, and had regular seasonal patterns. Deviations from those expected of nutrient-replete phytoplankton indicated strong nutrient limitation in the summer and roughly balanced growth during the winter prior to the onset of meromixis. Following the onset of meromixis, winter ratios were also indicative of modest nutrient limitation. A 3-year trend in C:N and N:P ratios toward more balanced growth beginning in 1998 suggest the impacts of meromixis weakened due to increased upward fluxes of ammonium associated with weakening stratification and entrainment of ammonium-rich monimolimnetic water. A series of nutrient enrichment experiments with natural assemblages of Mono Lake phytoplankton conducted during the onset of a previous episode of meromixis (1982–1986) confirm the nitrogen will limit phytoplankton before phosphorus or other micronutrients. Particulate ratios of a summer natural assemblage of phytoplankton collected under nitrogen-depleted conditions measured initially, following enrichment, and then after return to a nitrogen-depleted condition followed those expected based on Redfield ratios and laboratory studies.  相似文献   

8.
1. To assess changes in stoichiometric constraints on stream benthos, we measured elemental composition of epilithon and benthic macroinvertebrates in intrinsically P‐limited mountain rivers, upstream and downstream of low‐level anthropogenic nutrient enrichment by effluents of municipal wastewater treatment plants. 2. While there was a broad range in the elemental composition of epilithon (C : P ratios of 200–16 500, C : N ratios of 8–280, N : P ratios of 8–535) and heptageniid mayfly scrapers (C : P ratios of 125–300, C : N ratios of 5.1–7.2, N : P ratios of 20–60), the average C : P ratio of epilithon was 10‐fold lower and the average C : N ratio twofold lower at more nutrient‐rich downstream sites. Nutrient ratios in benthic macroinvertebrates were lower than in epilithon and varied little between relatively nutrient‐poor and nutrient‐rich sites. 3. We modified the existing definition of producer‐consumer elemental imbalance to allow for variation in consumer nutrient content. We defined this ‘non‐homeostatic’ imbalance as the perpendicular distance between the producer and consumer C : P, C : N, or N : P ratios, and the 1 : 1 line. 4. At P‐limited sites, the estimated mayfly N : P recycling ratio was higher than the N : P ratio in epilithon, suggesting nutrient recycling by consumers could accentuate P‐limitation of epilithon. 5. Measuring the degree of producer–consumer nutrient imbalance may be important in predicting the magnitude of effects from nutrient enrichment and can help elucidate the causes and consequences of ecological patterns and processes in rivers.  相似文献   

9.
We examined C:N:P ratios of seagrass leaves and epiphytic algae from the eastern shoreline of Grand Bay (Alabama, USA) and the entire shoreline of Big Lagoon (Florida, USA) during the summer of 2001 and March 2003, and used contour plotting of N:P ratios in both locations to examine spatial trends in our data. Results indicated phosphorus limitation for seagrass and epiphytes in each bay. In addition, C:N, C:P, and N:P ratios in both locations showed differences between summer and wintertime values for seagrasses; however, the only epiphytic elemental ratios to differ were C:P and N:P ratios in Grand Bay. Within Grand Bay, phosphorus limitation was stronger in epiphytes than seagrasses, with the largest amount of variation in N:P ratios occurring adjacent to the only developed land on the shoreline. In Big Lagoon, two distinct areas were present in N:P contour plots: the eastern end of the bay that was influenced by water from the Gulf of Mexico and Santa Rosa Sound, and the western end of the bay that was most influenced by Perdido Bay and a developed area along the northern shoreline. Detection of phosphorus limitation within Big Lagoon was not surprising, as both input sources to Big Lagoon are known to be low in phosphorus. However, phosphorus limitation in Grand Bay was unexpected, as both “feeder systems” (Mobile Bay and the Mississippi Sound) have high ambient phosphorus levels. As a result, C:N:P ratios from seagrasses and epiphytes may not accurately reflect ambient nutrient levels in Grand Bay due to decreased availability of some forms of phosphorus or increased competition for the uptake of phosphorus. Overall, our C:N:P analysis suggested that not only was P limitation greater than N limitation in Grand Bay and Big Lagoon, but patterns of nutrient limitation varied both temporally and geographically for inter- and intra-bay comparisons.  相似文献   

10.
The biochemical basis for variations in the critical nitrogen‐to‐phosphorus (N:P) ratio, which defines the transition between N‐ and P‐limitation of growth rate, is currently not well understood. To assess this issue, we cultured the cryptophyte Rhinomonas reticulata NOVARINO in chemostats with inflow nitrate‐to‐phosphate ratios ranging from 5 to 60 mol N·(mol P)?1 at two light intensities. The nitrate‐to‐phosphate ratio marking the transition between N‐ and P‐limitation was independent of light intensity and was between 30 and 45 mol N/mol P. In N‐limited cells, the particulate N:P ratio was stable at around 23 mol N/mol P over a range of inflow nitrate‐to‐phosphate from 5 to 30, whereas in P‐limited cells this ratio was around 90 mol N/mol P at inflow nitrate‐to‐phosphate ratios of 45 and 60. Cell phosphorus decreased with increasing nitrate‐to‐phosphate ratio up to the critical nitrate‐to‐phosphate ratio for each light intensity, above which they remained stable. The C:P of R. reticulata cells increased with increasing inflow nitrate‐to‐phosphate from around the Redfield value (106 mol C/mol P) to around 700. There was a significant effect of light on C:P in the N‐ limited cells, with higher C:P under high light conditions that was not observed in the P‐limited chemostats. Cellular RNA was not influenced by light but was greatly influenced by the type of nutrient limitation. In contrast, chl a, C, N, and protein were not influenced by the nitrate‐to‐phosphate in the inflow medium. Total protein per RNA was independent of light intensity but exhibited a maximum at inflow nitrate‐to‐phosphate of 30. Our results suggest a strong “two‐level” homeostatic mechanism of cellular N and P content in R. reticulata with two distinct states that are determined by the type of nutrient limitation and not by light.  相似文献   

11.
This article aims to test the light-nutrient hypothesis (LNH) in a periphytic community in a tropical black-water lake. Individual and interactive effects of light and nutrient availability were assessed with periphyton biomass accrual, nutrient content, and nutrient stoichiometry. We performed a manipulative field experiment with a 4 × 2 factorial design. We used nutrient diffusing substrates to produce four different nutrients treatments: Control (no nutrient added), nitrogen amended (N), phosphorus amended (P) and combined N and P amendment (NP). Two light levels were also considered: high light (near surface water) and low light (near bottom water). Light and nutrients individually and interactively caused significant changes in aggregate periphyton community properties. Total and autotrophic biomasses were significantly higher in high light conditions and in nutrient enriched treatments. Autotrophic biomass was significantly higher in N enriched treatment whereas total biomass was mainly affected by the joint addition of N and P. At lower light availability periphyton growth was limited, even in enriched treatments. Light also strongly affected periphyton nutrient content. Periphyton C, N and P in general increased when subjected to high light conditions. As predicted by the LNH, light promoted an increase in periphyton C:P ratios in P deprived treatments, but an opposite effect was observed on C:N ratios, especially in N-enriched treatments. This experiment revealed that light availability strongly limits the propagation of nutrient effects on periphyton growth. Such complex interdependencies on basal resources affect the proportion of autotrophic to total periphytic biomass that can be an important mechanism to explain variation in the nutrient stoichiometry of periphyton in nature.  相似文献   

12.
Plant resorption of multiple nutrients during leaf senescence has been established but stoichiometric changes among N, P and K during resorption and after fertilization are poorly understood. We anticipated that increased N supply would lead to further P limitation or co-limitation with N or K [i.e. P-(co)limitation], decrease N resorption and increase P and K resorption, while P and K addition would decrease P and K resorption and increase N resorption. Furthermore, Ca would accumulate while Mg would be resorbed during leaf senescence, irrespective of fertilization. We investigated the effect of N, P and K addition on resorption in two evergreen shrubs (Chamaedaphne calyculata and Rhododendron groenlandicum) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada. In general, N addition caused further P-(co)limitation, increased P and K resorption efficiency but did not affect N resorption. P and K addition did not shift the system to N limitation and affect K resorption, but reduced P resorption proficiency. C. calyculata resorbed both Ca and Mg while R. groenlandicum resorbed neither. C. calyculata showed a higher resorption than R. groenlandicum, suggesting it is better adapted to nutrient deficiency than R. groenlandicum. Resorption during leaf senescence decreased N:P, N:K and K:P ratios. The limited response of N and K and the response of P resorption to fertilization reflect the stoichiometric coupling of nutrient cycling, which varies among the two shrub species; changes in species composition may affect nutrient cycling in bogs.  相似文献   

13.
Pseudomonas oleovorans (ATCC 29347) was grown in batch and chemostat cultures with citrate, hexanoate, heptanoate, octanoate, and nonanoate as single carbon substrates. The growth medium for batch cultures was adjusted such that nitrogen (NH(4)(+)) limitation terminated the exponential-growth phase. During batch cultivation with octanoate or nonanoate the biomass continued to increase after depletion of ammonium due to the accumulation of medium-chain-length poly[(R)-3-hydroxyalkanoates] (mcl-PHAs). Additionally, a significant rate of mcl-PHA accumulation was also observed in the exponential-growth phase of batch cultures. It is well known that the accumulation of reserve materials is strongly dependent on the ratio of nutrients (here of carbon, C, and of nitrogen, N) and that in a batch culture the ratio of C:N is continuously changing. Therefore, we have also investigated the effect of defined ratios of C:N under constant cultivation conditions, namely at a fixed dilution rate (D) in a chemostat fed with different medium C:N ratios. These experiments were performed at a constant D of 0.2 h(-1). The concentration of the nitrogen source in the inflowing medium (N()) was kept constant, while its carbon concentration (C()) was increased stepwise, resulting in an increase of the medium carbon to nitrogen ratio (C()/N() ratio). The culture parameters and the cell composition of steady-state cultures were determined as a function of the C()/N() ratio in the feed medium. Mcl-PHA accumulation was detected during growth with the fatty acids, and three distinct regimes of growth limitation were discovered: In addition to carbon limitation at low, and nitrogen limitation at high C()/N() ratios, an intermediate growth regime of simultaneous limitation by carbon and nitrogen was detected where both substrates were used to completion. The width of this dual-nutrient-limited growth regime was dependent on the change in the yield factors for carbon and nitrogen (Y(X/C), Y(X/N)) measured during single-nutrient-limited growth.  相似文献   

14.
Nodularia spumigena is one of the dominating species during the extensive cyanobacterial blooms in the Baltic Sea. The blooms coincide with strong light, stable stratification, low ratios of dissolved inorganic nitrogen, and dissolved inorganic phosphorus. The ability of nitrogen fixation, a high tolerance to phosphorus starvation, and different photo-protective strategies (production of mycosporine-like amino acids, MAAs) may give N. spumigena a competitive advantage over other phytoplankton during the blooms. To elucidate the interactive effects of ambient UV radiation and nutrient limitation on the performance of N. spumigena, an outdoor experiment was designed. Two radiation treatments photosynthetic active radiation (PAR) and PAR +UV-A + UV-B (PAB) and three nutrient treatments were established: nutrient replete (NP), nitrogen limited (−N), and phosphorus limited (−P). Variables measured were specific growth rate, heterocyst frequency, cell volume, cell concentrations of MAAs, photosynthetic pigments, particulate carbon (POC), particulate nitrogen (PON), and particulate phosphorus (POP). Ratios of particulate organic matter were calculated: POC/PON, POC/POP, and PON/POP. There was no interactive effect between radiation and nutrient limitation on the specific growth rate of N. spumigena, but there was an overall effect of phosphorus limitation on the variables measured. Interaction effects were observed for some variables; cell size (larger cells in −P PAB compared to other treatments) and the carotenoid canthaxanthin (highest concentration in −N PAR). In addition, significantly less POC and PON (mol cell−1) were found in −P PAR compared to −P PAB, and the opposite radiation effect was observed in −N. Our study shows that despite interactive effects on some of the variables studied, N. spumigena tolerate high ambient UVR also under nutrient limiting conditions and maintain positive growth rate even under severe phosphorus limitation.  相似文献   

15.
Nitrogen (N) is considered the dominant limiting nutrient in temperate regions, while phosphorus (P) limitation frequently occurs in tropical regions, but in subtropical regions nutrient limitation is poorly understood. In this study, we investigated N and P contents and N:P ratios of foliage, forest floors, fine roots and mineral soils, and their relationships with community biomass, litterfall C, N and P productions, forest floor turnover rate, and microbial processes in eight mature and old-growth subtropical forests (stand age >80 yr) at Dinghushan Biosphere Reserve, China. Average N:P ratios (mass based) in foliage, litter (L) layer and mixture of fermentation and humus (F/H) layer, and fine roots were 28.3, 42.3, 32.0 and 32.7, respectively. These values are higher than the critical N:P ratios for P limitation proposed (16–20 for foliage, ca. 25 for forest floors). The markedly high N:P ratios were mainly attributed to the high N concentrations of these plant materials. Community biomass, litterfall C, N and P productions, forest floor turnover rate and microbial properties were more strongly related to measures of P than N and frequently negatively related to the N:P ratios, suggesting a significant role of P availability in determining ecosystem production and productivity and nutrient cycling at all the study sites except for one prescribed disturbed site where N availability may also be important. We propose that N enrichment is probably a significant driver of the potential P limitation in the study area. Low P parent material may also contribute to the potential P limitation. In general, our results provided strong evidence supporting a significant role for P availability, rather than N availability, in determining ecosystem primary productivity and ecosystem processes in subtropical forests of China.  相似文献   

16.
Under nitrogen limitation the phosphate content of Scenedesmus sp. shows little variation regardless of growth rate and the N/P atomic ratio of the medium. P uptake therefore can be calculated as the product of P content and N-dependent growth rate. The maximum rate of P uptake in N limitation is lower by a factor of about 8 than the rate in P limitation. As reported earlier, P uptake by this alga under P limitation is described by the kinetics resembling non-competitive enzyme inhibition, with one or several intracellular P fractions as inhibitors. These fractions include surplus P (water extractable) and inorganic polyphosphate fractions A (acid soluble) and B, C, and D (acid insoluble). In N limitation, the ratios of fractions A, B, C, and D are quite different from the ratios of P limitation at comparable growth rates. The concentrations of polyphosphate fraction A in N-limited cells are much, higher than the levels in P-limited cells, and this fraction becomes more predominant at low growth rates in N limitation. This fraction, if introduced as the inhibitor into the noncompetitive scheme, explains the uptake kinetics in both N- and P-limited cells and the low maximum uptake rate in N limitation. This finding may have two significant ecological implications: (1) A nutrient imbalance which brings about changes in the internal, level or the metabolism, of fraction A would affect P uptake. (2) Nitrogen sufficiency would cause a competitive advantage in P uptake. This advantage would be shared by N2 fixers and algae with low optimum N/P ratios. In Scenedesmus sp. P limitation switches to N limitation and vice versa when the cell N/P atomic ratio is about 30.  相似文献   

17.
Marine bacterioplankton were isolated and grown in batch cultures until their growth became limited by organic carbon (C), nitrogen (N), or phosphorus (P). Samples were taken from the cultures at both the exponential and stationary phases. The elemental composition of individual bacterial cells was analyzed by X-ray microanalysis with an electron microscope. The cell size was also measured. The elemental content was highest in exponentially growing cells (149 +/- 8 fg of C cell(-1), 35 +/- 2 fg of N cell(-1), and 12 +/- 1 fg of P cell(-1); average of all isolates +/- standard error). The lowest C content was found in C-limited cells (39 +/- 3 fg of C cell(-1)), the lowest N content in C- and P-limited cells (12 +/- 1 and 12 +/- 2 fg of N cell(-1), respectively), and the lowest P content in P-limited cells (2.3 +/- 0.6 fg of P cell(-1)). The atomic C:N ratios varied among treatments between 3.8 +/- 0.1 and 9.5 +/- 1.0 (average +/- standard error), the C:P ratios between 35 +/- 2 and 178 +/- 28, and the N:P ratios between 6.7 +/- 0.3 and 18 +/- 3. The carbon-volume ratios showed large variation among isolates due to different types of nutrient limitation (from 51+/- 4 to 241 +/- 38 fg of C microm(-1); average of individual isolates and treatments +/- standard error). The results show that different growth conditions and differences in the bacterial community may explain some of the variability of previously reported elemental and carbon-volume ratios.  相似文献   

18.
Light (20-450 μmol photons m-2 s-1), temperature (3-11°C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (~0.8 d-1) was observed at high temperture and light; at 3°C the growth rate was ~30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (~50) and N:P ratios (~8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3°C compared with 17-33 at 11°C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (α*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (Pm) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased to <1 under nutrient and light limitation, probably due to photorespiration. The results clearly demonstrate that there are interaction effects between light, temperature and nutrient limitation, and the data suggests greater variability of key parameters at low temperature. Understanding these dynamics will be important for improving models of aquatic primary production and biogeochemical cycles in a warming climate.  相似文献   

19.
Stoichiometric ratios of resources and consumers have been used to predict nutrient limitation across diverse terrestrial and aquatic ecosystems. In forested headwater streams, coarse and fine benthic organic matter (CBOM, FBOM) are primary basal resources for the food web, and the distribution and quality of these organic matter resources may therefore influence patterns of secondary production and nutrient cycling within stream networks or among biomes. We measured carbon (C), nitrogen (N), and phosphorus (P) content of CBOM and FBOM and calculated their stoichiometric ratios (C/N, C/P, N/P) from first- to fourth-order streams from tropical montane, temperate deciduous, and boreal forests, and tallgrass prairie, to compare the magnitude and variability of these resource types among biomes. We then used the ratios to predict nutritional limitations for consumers of each resource type. Across biomes, CBOM had consistently higher %C and %N, and higher and more variable C/N and C/P than FBOM, suggesting that microbial processing results in more tightly constrained elemental composition in FBOM than in CBOM. Biome-specific differences were observed in %P and N/P between the two resource pools; CBOM was lower in %P but higher in N/P than FBOM in the tropical montane and temperate deciduous forest biomes, while CBOM was higher in %P but similar in N/P than FBOM in the grassland and boreal forest biomes. Stable 13C isotopes suggest that FBOM likely derives from CBOM in tropical and temperate deciduous forest, but that additional non-detrital components may contribute to FBOM in boreal forests and grasslands. Comparisons of stoichiometric ratios of CBOM and FBOM to estimated needs of aquatic detritivores suggest that shredders feeding on CBOM are more likely to experience nutrient (N and/or P) than C limitation, whereas collector–gatherers consuming FBOM are more likely to experience C than N and/or P limitation. Our results suggest that differences in basal resource elemental content and stoichiometric ratios have the potential to affect consumer production and ecosystem rates of C, N, and P cycling in relatively consistent ways across diverse biomes.  相似文献   

20.
Diatoms are the main primary producers in the Southern Ocean, governing the major nutrient cycles. Fragilariopsis kerguelensis (O’Meara) Hust. is the most abundant diatom species in the Southern Ocean and its paleo‐oceanographic record is frequently used to reconstruct the past position and nutrient characteristics of the Antarctic polar front. Here we report on the responses of F. kerguelensis on prolonged exposure to a range of iron concentrations, allowing a characterization of morphological and nutrient‐depletion changes in relation to iron status. Under iron limitation, F. kerguelensis grew slower, cells became smaller, chains became shorter, and the nutrient‐depletion ratios changed. Prolonged exposure to iron limitation caused F. kerguelensis to decrease its surface area and volume 2‐fold, and to increase its surface‐to‐volume ratio by 25%. With the decrease in growth rates, silicon (Si) and phosphorus (P) depletion per cell remained fairly constant, but when normalized per surface area (Si) or per cell volume (P), depletion increased. In contrast, nitrogen (N) depletion per cell decreased significantly together with the decrease in growth rates but was constant when normalized per cell volume. The different response in Si, P, and N depletion resulted in changes in the nutrient‐depletion ratios, most notably in the Si:N ratio, which significantly increased, and in the N:P ratio, which significantly decreased with decreasing growth rates. It is concluded that under iron limitation, variation in cell size and/or nutrient depletion ultimately can cause changes in oceanic biogeochemical nutrient cycles. It enables the use of cell size of F. kerguelensis as a paleo‐oceanographic proxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号