首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Inflow of matter and organisms may strongly affect the local density and diversity of organisms. This effect is particularly evident on shores where organisms with aquatic larval stages enter the terrestrial food web. The identities of such trophic links are not easily estimated as spiders, a dominant group of shoreline predator, have external digestion. We compared trophic links and the prey diversity of spiders on different shore types along the Baltic Sea: on open shores and on shores with a reed belt bordering the water. A priori, we hypothesized that the physical structure of the shoreline reduces the flow between ecosystem and the subsidies across the sea–land interface. To circumvent the lack of morphologically detectable remains of spider prey, we used a combination of stable isotope and molecular gut content analyses. The two tools used for diet analysis revealed complementary information on spider diets. The stable isotope analysis indicated that spiders on open shores had a marine signal of carbon isotopes, while spiders on reedy shores had a terrestrial signal. The molecular analysis revealed a diverse array of dipteran and lepidopteran prey, where spiders on open and reedy shores shared a similar diet with a comparable proportion of chironomids, the larvae of which live in the marine system. Comparing the methods suggests that differences in isotope composition of the two spider groups occurred because of differences in the chironomid diets: as larvae, chironomids of reedy shores likely fed on terrestrial detritus and acquired a terrestrial isotope signature, while chironomids of open shores utilized an algal diet and acquired a marine isotope signature. Our results illustrate how different methods of diet reconstruction may shed light on complementary aspects of nutrient transfer. Overall, they reveal that reed belts can reduce connectivity between habitats, but also function as a source of food for predators.  相似文献   

2.
    
Terrestrial predators on marine shores benefit from the inflow of organisms and matter from the marine ecosystem, often causing very high predator densities and indirectly affecting the abundance of other prey species on shores. This indirect effect may be particularly strong if predators shift diets between seasons. We therefore quantified the seasonal variation in diet of two wolf spider species that dominate the shoreline predator community, using molecular gut content analyses with general primers to detect the full prey range. Across the season, spider diets changed, with predominantly terrestrial prey from May until July and predominantly marine prey (mainly chironomids) from August until October. This pattern coincided with a change in the spider age and size structure, and prey abundance data and resource selection analyses suggest that the higher consumption of chironomids during autumn is due to an ontogenetic diet shift rather than to variation in prey abundance. The analyses suggested that small dipterans with a weak flight capacity, such as Chironomidae, Sphaeroceridae, Scatopsidae and Ephydridae, were overrepresented in the gut of small juvenile spiders during autumn, whereas larger, more robust prey, such as Lepidoptera, Anthomyidae and Dolichopodidae, were overrepresented in the diet of adult spiders during spring. The effect of the inflow may be that the survival and growth of juvenile spiders is higher in areas with high chironomid abundances, leading to higher densities of adult spiders and higher predation rates on the terrestrial prey next spring.  相似文献   

3.
4.
    
The aim of this work was to evaluate the suitability of selected DNA regions in the barcoding of plants, based on the species belonging to the genus Lamium (Lamiaceae). For this purpose, nine chloroplast barcodes, that is, accD, matK, rbcL, rpoA, rpoB, rpoC1, rpoC2, trnH‐psbA, trnL‐trnF, as well as ITS nuclear region, and intron of mitochondrial nad5 gene were tested. Among the single‐locus barcodes, most effective in the identification of Lamium species was the trnH‐psbA spacer and matK gene. The high level of variability and resolving power was also observed in the case of rpoA and rpoC2 genes. Despite the high interspecies variability of ITS region, it turned out to be inapplicable in Lamium identification. An important disadvantage of ITS as a barcode is a limitation of its use in polyploid plants, samples contaminated with fungal material or samples with partially degraded DNA. We have also evaluated five‐two‐locus and two‐three‐locus barcode regions created from a combination of most effective single loci. The best‐performing barcode combinations were matK + trnH‐psbA and matK + rpoA. Both of them had equally high discriminative power to identify Lamium species.  相似文献   

5.
    
Small portions of the barcode region – mini‐barcodes – may be used in place of full‐length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini‐barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini‐barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30 472)]. PCR amplification for all mini‐barcodes, as estimated by validated electronic simulation, was successful for 90.2–99.8% of species. Overall Sanger sequence quality for mini‐barcodes was very low – the best mini‐barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini‐barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini‐barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini‐barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini‐barcode D (F52/R193).  相似文献   

6.
7.
Optimal foraging theory predicts that predators are selective when faced with abundant prey, but become less picky when prey gets sparse. Insectivorous bats in temperate regions are faced with the challenge of building up fat reserves vital for hibernation during a period of decreasing arthropod abundances. According to optimal foraging theory, prehibernating bats should adopt a less selective feeding behaviour – yet empirical studies have revealed many apparently generalized species to be composed of specialist individuals. Targeting the diet of the bat Myotis daubentonii, we used a combination of molecular techniques to test for seasonal changes in prey selectivity and individual‐level variation in prey preferences. DNA metabarcoding was used to characterize both the prey contents of bat droppings and the insect community available as prey. To test for dietary differences among M. daubentonii individuals, we used ten microsatellite loci to assign droppings to individual bats. The comparison between consumed and available prey revealed a preference for certain prey items regardless of availability. Nonbiting midges (Chironomidae) remained the most highly consumed prey at all times, despite a significant increase in the availability of black flies (Simuliidae) towards the end of the season. The bats sampled showed no evidence of individual specialization in dietary preferences. Overall, our approach offers little support for optimal foraging theory. Thus, it shows how novel combinations of genetic markers can be used to test general theory, targeting patterns at both the level of prey communities and individual predators.  相似文献   

8.
    
Tubers of terrestrial orchids are harvested and traded from the eastern Mediterranean to the Caspian Sea for the traditional product Salep. Overexploitation of wild populations and increased middle‐class prosperity have escalated prices for Salep, causing overharvesting, depletion of native populations and providing an incentive to expand harvesting to untapped areas in Iran. Limited morphological distinctiveness among traded Salep tubers renders species identification impossible, making it difficult to establish which species are targeted and affected the most. In this study, a reference database of 490 nrITS, trnL‐F spacer and matK sequences of 133 taxa was used to identify 150 individual tubers from 31 batches purchased in 12 cities in Iran to assess species diversity in commerce. The sequence reference database consisted of 211 nrITS, 158 trnL‐F and 121 matK sequences, including 238 new sequences from collections made for this study. The markers enabled unambiguous species identification with tree‐based methods for nrITS in 67% of the tested tubers, 58% for trnL‐F and 59% for matK. Species in the genera Orchis (34%), Anacamptis (27%) and Dactylorhiza (19%) were the most common in Salep. Our study shows that all tuberous orchid species in this area are threatened by this trade, and further stresses the urgency of controlling illegal harvesting and cross‐border trade of Salep tubers.  相似文献   

9.
    
Bacterial endosymbionts are common among arthropods, and maternally inherited forms can affect the reproductive and behavioural traits of their arthropod hosts. The prevalence of bacterial endosymbionts and their role in scorpion evolution have rarely been investigated. In this study, 61 samples from 40 species of scorpion in the family Vaejovidae were screened for the presence of the bacterial endosymbionts Cardinium, Rickettsia, Spiroplasma and Wolbachia. No samples were infected by these bacteria. However, one primer pair specifically designed to amplify Rickettsia amplified nontarget genes of other taxa. Similar off‐target amplification using another endosymbiont‐specific primer was also found during preliminary screenings. Results caution against the overreliance on previously published screening primers to detect bacterial endosymbionts in host taxa and suggest that primer specificity may be higher in primers targeting nuclear rather than mitochondrial genes.  相似文献   

10.
    
Lipid synthesis can have a major effect on survival and reproduction, yet most insect parasitoids fail to synthesize lipids. For parasitic wasps in the genus Leptopilina, however, studies have suggested that there is intraspecific variation in the ability for lipid synthesis. These studies were performed on only few populations, and a large‐scale investigation of both lipogenic ability and population genetic structure is now needed. Here, we first examined lipogenic ability of nine Leptopilina heterotoma populations collected in 2013 and found that five of nine populations synthesized lipids. The 2013 populations could not be used to determine genetic structure; hence, we obtained another 20 populations in 2016 that were tested for lipogenic ability. Thirteen of 20 populations (all Leptopilina heterotoma) were then used to determine the level of genetic differentiation (i.e., haplotype and nucleotide diversity) by sequencing neutral mitochondrial (COI) and nuclear (ITS2) markers. None of the 2016 populations synthesized lipids, and no genetic differentiation was found. Our results did reveal a nearly twofold increase in mean wasp lipid content at emergence in populations obtained in 2016 compared to 2013. We propose that our results can be explained by plasticity in lipid synthesis, where lipogenic ability is determined by environmental factors, such as developmental temperature and/or the amount of lipids carried over from the host.  相似文献   

11.
    
The Microgastrinae are a hugely diverse subfamily of endoparasitoid wasps of lepidopteran caterpillars. They are important in agriculture as biological control agents and play a significant ecological role in the regulation of caterpillar populations. Whilst the group has been the focus of intensive rearing and DNA barcoding studies in the Northern Hemisphere, the Australian fauna has received little attention. In total, 99 species have been described from or have been introduced into Australia, but the real species diversity for the region is clearly much larger than this. In this study, museum ethanol samples and recent field collections were mined for hundreds of specimens of microgastrine wasps, which were then barcoded for the COI region, ITS2 ribosomal spacer and the wingless nuclear genes, using a pooled sequencing approach on an Illumina Miseq system. Full COI sequences were obtained for 525 individuals which, when combined with 162 publicly available sequences, represented 417 haplotypes, and a total of 236 species were delimited using a consensus approach. By more than doubling the number of known microgastrine wasp species in Australia, our study highlights the value of DNA barcoding in the context of employing high‐throughput sequencing methods of bulk ethanol museum collections for biodiversity assessment.  相似文献   

12.
    
Identification of rodents is very difficult mainly due to high similarities in morphology and controversial taxonomy. In this study, mitochondrial cytochrome oxidase subunit I (COI) was used as DNA barcode to identify the Murinae and Arvicolinae species distributed in China and to facilitate the systematics studies of Rodentia. In total, 242 sequences (31 species, 11 genera) from Murinae and 130 sequences (23 species, 6 genera) from Arvicolinae were investigated, of which 90 individuals were novel. Genetic distance, threshold method, tree‐based method, online BLAST and BLOG were employed to analyse the data sets. There was no obvious barcode gap. The average K2P distance within species and genera was 2.10% and 12.61% in Murinae, and 2.86% and 11.80% in Arvicolinae, respectively. The optimal threshold was 5.62% for Murinae and 3.34% for Arvicolinae. All phylogenetic trees exhibited similar topology and could distinguish 90.32% of surveyed species in Murinae and 82.60% in Arvicolinae with high support values. BLAST analyses yielded similar results with identification success rates of 92.15% and 93.85% for Murinae and Arvicolinae, respectively. BLOG successfully authenticated 100% of detected species except Leopoldamys edwardsi based on the latest taxonomic revision. Our results support the species status of recently recognized Micromys erythrotis, Eothenomys tarquinius and E. hintoni and confirm the important roles of comprehensive taxonomy and accurate morphological identification in DNA barcoding studies. We believe that, when proper analytic methods are applied or combined, DNA barcoding could serve as an accurate and effective species identification approach for Murinae and Arvicolinae based on a proper taxonomic framework.  相似文献   

13.
    
Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.  相似文献   

14.
    
The monotypic genus Auxenochlorella with its type species A. protothecoides is so far only known from specific habitats such as the sap of several tree species. Several varieties were described according to physiological performances in culture on different organic substrates. However, two strains designated as Auxenochlorella were isolated from other habitats (an endosymbiont of Hydra viridis and an aquatic strain from an acidic volcano stream). We studied those isolates and compared them with six strains of Auxenochlorella belonging to different varieties. The integrative approach used in this study revealed that all strains showed similar morphology but differed in their SSU and ITS rDNA sequences. The Hydra endosymbiont formed a sister taxon to A. protothecoides, which included the varieties protothecoides, galactophila, and communis. The variety acidicola is not closely related to Auxenochlorella and represented its own lineage within the Trebouxiophyceae. In view of these results, we propose a new species of Auxenochlorella, A. symbiontica, for the Hydra symbiont, and a new genus Pumiliosphaera, with its type species, P. acidophila, for acidophilic strain. These results are supported by several compensatory base changes in the conserved region of ITS‐2 and ITS‐2 DNA barcodes.  相似文献   

15.
    
Deep sympatric intraspecific divergence in mtDNA may reflect cryptic species or formerly distinct lineages in the process of remerging. Preliminary results from DNA barcoding of Scandinavian butterflies and moths showed high intraspecific sequence variation in the autumnal moth, Epirrita autumnata. In this study, specimens from different localities in Norway and some samples from Finland and Scotland, with two congeneric species as outgroups, were sequenced with mitochondrial and nuclear markers to resolve the discrepancy found between mtDNA divergence and present species‐level taxonomy. We found five COI sub‐clades within the E. autumnata complex, most of which were sympatric and with little geographic structure. Nuclear markers (ITS2 and Wingless) showed little variation and gave no indications that E. autumnata comprises more than one species. The samples were screened with primers for Wolbachia outer surface gene (wsp) and 12% of the samples tested positive. Two Wolbachia strains were associated with different mtDNA sub‐clades within E. autumnata, which may indicate indirect selection/selective sweeps on haplotypes. Our results demonstrate that deep mtDNA divergences are not synonymous with cryptic speciation and this has important implications for the use of mtDNA in species delimitation, like in DNA barcoding.  相似文献   

16.
Plant–herbivore interaction networks provide information about community organization. Two methods are currently used to document pairwise interactions among plants and insect herbivores. One is the traditional method that collects plant–herbivore interaction data by field observation of insect occurrence on host plants. The other is the increasing application of newly developed molecular techniques based on DNA barcodes to the analysis of gut contents. The second method is more appealing because it documents realized interactions. To construct complete interaction networks, each technique of network construction is urgent to be assessed. We addressed this question by comparing the effectiveness and reliability of the two methods in constructing plant–Lepidoptera larval network in a 50 ha subtropical forest in China. Our results showed that the accuracy of diet identification by observation method increased with the number of observed insect occurrences on food plants. In contrast, the molecular method using three plant DNA markers were able to identify food residues for 35.6% larvae and correctly resolved 77.3% plant (diet) species. Network analysis showed molecular networks had threefold more unique host plant species but fewer links than the traditional networks had. The molecular method detected plants that were not sampled by the traditional method, for example, bamboos, bryophytes and lianas in the diets of insect herbivores. The two networks also possessed significantly different structural properties. Our study indicates the traditional observation of co‐occurrence is inadequate, while molecular method can provide higher species resolution of ecological interactions.  相似文献   

17.
    
Although two plastid regions have been adopted as the standard markers for plant DNA barcoding, their limited resolution has provoked the consideration of other gene regions, especially in taxonomically diverse genera. The genus Gossypium (cotton) includes eight diploid genome groups (A–G, and K) and five allotetraploid species which are difficult to discriminate morphologically. In this study, we tested the effectiveness of three widely used markers (matK, rbcL, and ITS2) in the discrimination of 20 diploid and five tetraploid species of cotton. Sequences were analysed locus‐wise and in combinations to determine the most effective strategy for species identification. Sequence recovery was high, ranging from 92% to 100% with mean pairwise interspecific distance highest for ITS2 (3.68%) and lowest for rbcL (0.43%). At a 0.5% threshold, the combination of matK+ITS2 produced the greatest number of species clusters. Based on ‘best match’ analysis, the combination of matK+ITS2 was best, while based on ‘all species barcodes’ analysis, ITS2 gave the highest percentage of correct species identifications (98.93%). The combination of sequences for all three markers produced the best resolved tree. The disparity index test based on matK+rbcL+ITS2 was significant (< 0.05) for a higher number of species pairs than the individual gene sequences. Although all three barcodes separated the species with respect to their genome type, no single combination of barcodes could differentiate all the Gossypium species, and tetraploid species were particularly difficult.  相似文献   

18.
    
The vast number of undescribed species and the fast rate of biodiversity loss call for new approaches to speed up alpha taxonomy. A plethora of methods for delimiting species or operational taxonomic units (OTUs) based on sequence data have been published in recent years. We test the ability of four delimitation methods (BIN, ABGD, GMYC, PTP) to reproduce established species boundaries on a carefully curated DNA barcode data set of 1870 North European beetle species. We also explore how sampling effort, intraspecific variation, nearest neighbour divergence and nonmonophyly affect the OTU delimitations. All methods produced approximately 90% identity between species and OTUs. The effects of variation and sampling differed between methods. ABGD was sensitive to singleton sequences, while GMYC showed tendencies for oversplitting. The best fit between species and OTUs was achieved using simple rules to find consensus between discordant OTU delimitations. Using several approaches simultaneously allows the methods to compensate for each other's weaknesses. Barcode‐based OTU‐picking is an efficient way to delimit putative species from large data sets where the use of more sophisticated methods based on multilocus or genomic data is not feasible.  相似文献   

19.
    
A coral's capacity to alter its microbial symbionts may enhance its fitness in the face of climate change. Recent work predicts exposure to high environmental variability may increase coral resilience and adaptability to future climate conditions. However, how this heightened environmental variability impacts coral‐associated microbial communities remains largely unexplored. Here, we examined the bacterial and algal symbionts associated with two coral species of the genus Siderastrea with distinct life history strategies from three reef sites on the Belize Mesoamerican Barrier Reef System with low or high environmental variability. Our results reveal bacterial community structure, as well as alpha‐ and beta‐diversity patterns, vary by host species. Differences in bacterial communities between host species were partially explained by high abundance of Deltaproteobacteria and Rhodospirillales and high bacterial diversity in Siderastrea radians. Our findings also suggest Siderastrea spp. have dynamic core bacterial communities that likely drive differences observed in the entire bacterial community, which may play a critical role in rapid acclimatization to environmental change. Unlike the bacterial community, Symbiodiniaceae composition was only distinct between host species at high thermal variability sites, suggesting that different factors shape bacterial versus algal communities within the coral holobiont. Our findings shed light on how domain‐specific shifts in dynamic microbiomes may allow for unique methods of enhanced host fitness.  相似文献   

20.
    
Species identification based on the DNA sequence of a fragment of the cytochrome c oxidase subunit I gene in the mitochondrial genome, DNA barcoding, is widely applied to assist in sustainable exploitation of fish resources and the protection of fish biodiversity. The aim of this study was to establish a reliable barcoding reference database of the native ray‐finned fishes in Taiwan. A total of 2993 individuals, belonging to 1245 species within 637 genera, 184 families and 29 orders of ray‐finned fishes and representing approximately 40% of the recorded ray‐finned fishes in Taiwan, were PCR amplified at the barcode region and bidirectionally sequenced. The mean length of the 2993 barcodes is 549 bp. Mean congeneric K2P distance (15.24%) is approximately 10‐fold higher than the mean conspecific one (1.51%), but approximately 1.4‐fold less than the mean genetic distance between families (20.80%). The Barcode Index Number (BIN) discordance report shows that 2993 specimens represent 1275 BINs and, among them, 86 BINs are singletons, 570 BINs are taxonomically concordant, and the other 619 BINs are taxonomically discordant. Barcode gap analysis also revealed that more than 90% of the collected fishes in this study can be discriminated by DNA barcoding. Overall, the barcoding reference database established by this study reveals the need for taxonomic revisions and voucher specimen rechecks, in addition to assisting in the management of Taiwan's fish resources and diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号